Applied Stochastic Processes

Exercise sheet 14

Quiz 14.1

- (a) Let $(N_t)_{t\geq 0}$ be a counting process. Which of the following implies that N is a Poisson process with rate λ ?
 - 1. N is a Poisson point process with intensity measure λ Leb on \mathbb{R}_+ .
 - 2. N has independent and stationary increments.
 - 3. N has independent and stationary increments and $N_t N_s \sim \text{Poisson}(\lambda(t-s))$ for all 0 < s < t.
 - 4. N has the Markov property.
 - 5. N is a renewal process with $T_1 \sim \text{Exp}(\lambda)$.
- (b) Which of the following are correct?
 - 1. A stochastic process $(N_t)_{t\geq 0}$ with independent, stationary increments satisfying $N_0 = 0$ and $N_t \sim \text{Pois}(t)$ is a Poisson process with rate 1.
 - 2. A counting process with stationary increments has independent increments.
 - 3. Let $(N_t)_{t\geq 0}$ be a counting process. Then $(N_t)_{t\geq 0}$ is almost surely càdlàg. [A function is *càdlàg* if it is right-continuous with left limits.]
 - 4. Let $t \ge 0$. The number of jumps of $(N_t)_{t\ge 0}$ in the interval [0, t] is almost surely finite.
 - 5. For a Poisson process $(N_t)_{t\geq 0}$ with rate $\lambda > 0$, the waiting time S_n has a Gamma (n, λ) distribution.

Exercise 14.2 [Inhomogeneous Poisson process I]

Let $\rho: [0, \infty) \to (0, \infty)$ be a continuous function satisfying $\int_0^\infty \rho(u) du = \infty$. A counting process $(N_t)_{t\geq 0}$ is called an *inhomogeneous Poisson process* with rate ρ if it has independent increments and for all t > s > 0,

$$N_t - N_s \sim \operatorname{Pois}\left(\int_s^t \rho(u) du\right).$$

- (a) For which choice of the function ρ do we obtain a Poisson process with rate λ ?
- (b) Does $(N_t)_{t\geq 0}$ have stationary increments?

Denote the jump times of $(N_t)_{t\geq 0}$ by $(S_i)_{i\geq 1}$, and consider the counting measure $M = \sum_{i\geq 1} \delta_{S_i}$. Analogously to the proof of Theorem 7.4, it is possible to prove that M is a Poisson point process on \mathbb{R}_+ .

- (c) What is the intensity measure μ_{ρ} of the Poisson point process M?
- (d) Is S_1 , the time until the first jump, independent of $S_2 S_1$, the time between the first and the second jump?

Exercise 14.3 [Inhomogeneous Poisson process II]

Let $\rho: [0,\infty) \to (0,\infty)$ be a continuous function satisfying $\int_0^\infty \rho(u) du = \infty$.

(a) Define $R: [0,\infty) \to [0,\infty)$ by

$$R(t) = \int_0^t \rho(u) du.$$

Show that R is a continuous, increasing bijection.

- (b) Let $(N_t)_{t\geq 0}$ be an inhomogeneous Poisson process with rate ρ . Show that $(N_t)_{t\geq 0}$ defined by $\widetilde{N}_t := N_{R^{-1}(t)}$ is a Poisson process with rate 1.
- (c) Let $(N_t)_{t\geq 0}$ be a Poisson process with rate 1. Show that $(N_t)_{t\geq 0}$ defined by $N_t := N_{R(t)}$ is an inhomogeneous Poisson process with rate ρ .

Exercise 14.4 [The Waiting Time Paradox]

- (a) Let (N_t)_{t≥0} be a Poisson process with rate λ > 0. Let (S_n)_{n≥1} be the jump times of the process. For a fixed t > 0, let A_t = t − S_{Nt} be the time passed since the most recent jump (or after 0) in the process, and let B_t = S_{Nt+1} − t be the time forward to the next jump. Let T₁ ~ Exp(λ). Show that A_t and B_t are independent, that B_t is distributed as T₁ and that A_t is distributed as T₁ ∧ t.
- (b) Let $L_t = A_t + B_t = S_{N_t+1} S_{N_t}$ be the length of the inter-arrival interval covering t. Show that

$$\mathbf{E}[L_t] \to 2\mathbf{E}[T_1]$$
 as $t \to \infty$.

Since L_t is the time between two consecutive jumps, we might expect $\mathbf{E}[L_t] = \mathbf{E}[T_1]$. Give an intuitive resolution of the apparent paradox.

Exercise 14.5 [Largest gap in a Poisson process]

Let $(N_t)_{t>0}$ be a Poisson process with intensity $\lambda > 0$. The largest gap up to time t is defined as

$$L_t = \max_{k \ge 1} (S_k \wedge t - S_{k-1} \wedge t).$$

(a) Let $\varepsilon > 0$. Show that there exists almost surely some $n_0 \ge 1$ such that for all $n \ge n_0$,

$$\max_{1 \le k \le n} T_k \le \frac{1+\varepsilon}{\lambda} \log(n/\lambda),$$

where the T_1, \ldots, T_n denote the inter-arrival times of the process.

Hint: Use Borel-Cantelli's lemma.

(b) Show that there exists almost surely some $t_0 \ge 0$ such that for all $t > t_0$,

$$N_t + 1 \le (1 + \varepsilon)t\lambda.$$

(c) Conclude that almost surely

$$\limsup_{t \to \infty} \frac{L_t}{\log t} \le \lambda^{-1}.$$

Submission deadline: 10:15, June 3.

Please submit your solutions online before the beginning of the lecture. Further information is available on: https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/

The Applied Stochastic Processes team wishes you a great summer break and best of luck for your exam preparation!