ETH Zürich, FS 2025 D-MATH Prof. Vincent Tassion

Applied Stochastic Processes

Exercise sheet 4

Quiz 4.1 [Quiz]

Let $x, y \in S$. For $x \in S$, we recall the definitions $H_x = \min\{n \ge 1 : X_n = x\}$,

$$V_x = \sum_{k \ge 1} \mathbf{1}_{X_k = x}$$
, and $V_x^{(n)} = \sum_{k=1}^n \mathbf{1}_{X_k = x}$.

In addition, we define $\widetilde{H_x} = \min\{n \ge 0 : X_n = x\}$, and

$$\widetilde{V_x} = \sum_{k \ge 0} \mathbf{1}_{X_k = x}.$$

- (a) Which of the following statements are correct?
 - 1. $|H_x \widetilde{H_x}| \le 1$ a.s. 2. $\mathbf{P}_y[\widetilde{H_x} < \infty] = \mathbf{P}_y[H_x < \infty]$ for all x, y. 3. $\mathbf{P}_y[\widetilde{H_x} < \infty] = \mathbf{P}_y[H_x < \infty]$ for all $x \ne y$.
 - 4. $\mathbf{E}_x[\widetilde{V_x}] = 1 + \mathbf{E}_x[V_x]$ for all x.
 - 5. $\widetilde{V_x} = V_x \quad \mathbb{P}_y$ -a.s for all $x \neq y$.
- (b) Now let us fix $x \neq y$. Which of the following statements are correct?
 - 1. $\mathbf{E}_{y}[V_{x}] = \mathbf{P}_{y}[H_{x} < \infty] \cdot (1 + \mathbf{E}_{x}[V_{x}]).$
 - 2. $\mathbf{E}_{y}[V_{x}^{(n)}] = \mathbf{E}_{y}[V_{x}^{(n+1)}]$ for all $n \ge 1$.
 - 3. $\lim_{n \to \infty} \mathbf{E}_{y}[V_{x}^{(n)}] = \mathbf{E}_{y}[V_{x}].$
 - 4. It is possible that $\mathbf{P}_x[V_x = \infty] = 1/2$.
 - 5. It is possible that $\mathbf{P}_x[V_x = 2] = 1/8$.

Exercise 4.2 [Biased and reflected random walk]

Let $\alpha \in (0, 1)$. We consider the biased random walk X on Z, i.e. the Markov chain with state space Z and transition probability given by

 $p_{x,x+1} = \alpha$, and $p_{x,x-1} = 1 - \alpha$ for $x \in \mathbb{Z}$.

- (a) Let $x \in \mathbb{Z}$. Show that x is recurrent if $\alpha = 1/2$.
 - Reminder: If Z_1, Z_2, \ldots are iid uniform in $\{-1, +1\}$ then there exists a constant c > 0 such that $\mathbb{P}(Z_1 + \cdots + Z_{2n} = 0) \sim \frac{c}{\sqrt{n}}$ as $n \to \infty$.
- (b) Let $x \in \mathbb{Z}$. Show that x is transient if $\alpha \neq 1/2$. Hint: Use the strong law of large numbers.

We now consider the reflected random walk Y on N, i.e. the Markov chain with state space N and transition probability given by $p_{0,1} = 1$,

$$p_{x,x+1} = \alpha$$
, and $p_{x,x-1} = 1 - \alpha$ for $x \ge 1$.

1/2

(c) Show that 0 is recurrent if $\alpha \leq 1/2$.

Hint: Construct a coupling with the biased random walk X.

- (d) Show that 0 is positive recurrent if $\alpha < 1/2$.
- (e) Show that 0 is transient if $\alpha > 1/2$.

As a direct consequence of the Classification of States Theorem (next week), it will follow that any state x is recurrent if and only if $0 < \alpha \leq 1/2$.

Exercise 4.3 [SRW on a *d*-regular tree]

Let $d \ge 3$. In this exercise, we consider the simple random walk X on the *d*-regular tree $\mathbf{T}_d = (V, E)$, i.e. the infinite tree with *d* edges at each vertex. This is the Markov chain with state space V and transition probability given by

$$p_{xy} = \frac{1}{d} \cdot \mathbf{1}_{\{x,y\} \in E} \; .$$

Show that every state $x \in V$ is transient.

Hint: Under \mathbf{P}_x , consider the distance of X_n from the starting point x.

Exercise 4.4 [Returning Markov Chain]

Let μ be a measure on \mathbb{Z}^2 . Consider the Markov Chain X with the following transition probability for $x = (x_1, x_2)$ and $y = (y_1, y_2)$:

$$p_{xy} = \begin{cases} \mu(y), & \text{if } x_1 = x_2 = 0, \\ 1, & \text{if } x_2 \neq 0, \, x_1 = y_1 \text{ and } x_2 - \operatorname{sign}(x_2) = y_2, \\ 1, & \text{if } x_2 = 0, \, x_1 \neq 0, \, x_2 = y_2 \text{ and } x_1 - \operatorname{sign}(x_1) = y_1, \\ 0, & \text{otherwise.} \end{cases}$$

In other words, from the state (0,0) the Markov Chain jumps according to μ , and then it deterministically returns to the origin, first moving vertically and then horizontally.

- (a) Prove that (0,0) is recurrent.
- (b) Study the positive or null recurrence of (0,0).
- (c) Prove or disprove that the following are Markov Chains.
 - 1. $(||X_n||_{\infty})_{n\geq 0}$.
 - 2. $(||X_n||_1)_{n\geq 0}$.
 - 3. $(\Pi_x(X_n))_{n>0}$. Here, $\Pi_x(x,y) = x$.

Submission deadline: 10:15, March 18.

Please submit your solutions online before the beginning of the lecture. Further information is available on: https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/