Applied Stochastic Processes

Exercise sheet 9

Quiz 9.1

(a) Let T_i , $i \ge 1$, be iid Uniform random variables in [0,3]. In which case does $(N_t)_{t\ge 0}$ define a renewal process?

1.
$$N_t = \sum_{i \ge 1} \mathbf{1}_{T_1^2 + \dots + T_i^2 \le t}.$$

2.
$$N_t = \sum_{i \ge 1} \mathbf{1}_{T_2 + \dots + T_{i+1} \le t}$$
.

3.
$$N_t = \sum_{i \ge 1} \mathbf{1}_{T_1^2 + \dots + T_i^2 \le t}.$$

4.
$$N_t = \sum_{i>1} \mathbf{1}_{i \le t}$$
.

5.
$$N_t = \sum_{i>1} \mathbf{1}_{i^2 \le t}$$
.

- (b) Let $(N_t)_{t\geq 0}$ be a renewal process with arrival distribution given by T_1 and denote $\mu = \mathbb{E}[T_1]$. Recall that $m(t) := \mathbb{E}[N_t]$ for $t \geq 0$. Which of the following are true?
 - 1. If $T_1 \sim \text{Exp}(\lambda)$ for $\lambda > 0$, then we have that $m(t) = \frac{t}{\mu}$ for all $t \geq 0$.
 - 2. If $T_1 \sim \text{Uniform}([0,1])$, then we have that $m(t) = \frac{t}{\mu}$ for all $t \geq 0$.
 - 3. $\lim_{t \to \infty} \frac{m(t)}{t} = \frac{1}{\mu}.$
 - 4. If the arrival distribution is non-lattice, $\lim_{t\to\infty} \frac{m(t)}{t} = \frac{1}{\mu}$.
 - 5. If the arrival distribution is lattice, $\lim_{t\to\infty} \frac{m(t)}{t} = \frac{1}{\mu}$.

Exercise 9.2 [Convolution operator]

Let $G_1, G_2 : \mathbb{R}^+ \to \mathbb{R}^+$ be right-continuous, non-decreasing functions.

- (a) Show that $G_1 * G_2$ is right-continuous and non-decreasing and that $G_1 * G_2 = G_2 * G_1$.
- (b) Let $h: \mathbb{R}^+ \to \mathbb{R}$ s.t. the convolutions are well-defined. Show that $(h*G_1)*G_2 = h*(G_1*G_2)$.

Exercise 9.3 [Age process]

Let $(N_t)_{t\geq 0}$ be a renewal process with arrival distribution F. Denote by $(A_t)_{t\geq 0}$ the age process of $(N_t)_{t\geq 0}$, defined by

$$A_t = t - S_{N_t}$$
.

For $x \geq 0$, set $a_x(t) = \mathbb{P}[A_t \leq x]$ for $t \geq 0$. Show that a_x satisfies the renewal equation

$$a_x(t) = \mathbf{1}_{t \le x} (1 - F(t)) + \int_0^t a_x(t - s) dF(s)$$
 for $t \ge 0$,

i.e. $a_x = h_x + a_x * F$, where $h_x(t) = \mathbb{1}_{\{t < x\}} (1 - F(t))$.

Exercise 9.4 [Cycles of operation and repair of a machine]

Let $(U_i, V_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables with $U_i \geq 0$, $V_i \geq 0$. Assume that $T_i = U_i + V_i$ is not almost surely equal to 0 and denote by F its distribution function. We interpret U_i and V_i as alternating periods when a given machine is operational or in repair. The period U_1 begins at time 0. For $t \geq 0$ we define $Y_t = 1$ if the machine is operational at time t and $Y_t = 0$ otherwise. Let $g(t) = \mathbb{P}[Y_t = 1]$ denote the probability of the machine being operational at time $t \geq 0$, and g(t) = 0 for t < 0. We also define $h(t) = \mathbb{P}[U_1 > t]$. Prove that for $t \geq 0$

$$g(t) = h(t) + \int_0^t g(t-s)dF(s),$$

i.e. that g is the solution of the (h, F)-renewal equation.

Submission deadline: 10:15, April 29.

Please submit your solutions online before the beginning of the lecture.

Further information is available on:

https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/