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Solution 1.1
For the matrix P = (pij)i,j∈{1,2,3} to define a transition probability, the two following properties

must hold:

1. pij ≥ 0, for all i, j ∈ {1, 2, 3}.

2.
∑

j∈S pij = 1, for all i.

The matrix 1 violates the second condition, while the matrix 5 violates the first condition. The
remaining matrices define transition probabilities and correspond to Markov Chains on S = {1, 2, 3}
according to Theorem 1.3 of the Lecture Notes.

Solution 1.2

1. P(X10 = a, X100 = a) > 0.
True. We have:

P(X10 = a, X100 = a) ≥ P(Xn = a, n = 0, ..., 100) = 1
2100 > 0.

2. P(X10 = b, X100 = a) > 0.

False. Once the chain reaches b, it remains there forever because pbb = 1. More formally,

P(X100 = b|X10 = b) = 1 =⇒ P(X10 = b, X100 = b) = P(X10 = b),

and so P(X10 = b, X100 = a) = 0.

3. P(X0 = a, X1 = a, X2 = a) = P(X0 = a, X1 = a, X2 = b).
True. We compute:

P(X0 = a, X1 = a, X2 = a) = P(X0 = a)paapaa = 1 × 1
2 × 1

2 = 1
4 .

Similarly,

P(X0 = a, X1 = a, X2 = b) = P(X0 = a)paapab = 1 × 1
2 × 1

2 = 1
4 .

Since both are equal, the statement is true.

4. For every n ≥ 1, p
(n)
aa = P(X0 = X1 = · · · = Xn).

True. First note that P(X0 = a) = 1. Now:

p(n)
aa :=

∑
x1,...,xn−1∈{a,b}

pax1px1x2 · · · pxn−1a = paapaa · · · paa = µ(a)pn
aa = P(X0 = X1 = · · · = Xn).

We have used here that pab = 0, and thus all the terms of the sum where it appears vanish.
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5. For every x ∈ {a, b}, limn→∞ p
(n)
ax = 0.

False. Since p
(n)
aa + p

(n)
ab = 1, this equality must hold in the limit when n → ∞ as well. It is

easy to prove that, in fact, limn→∞ p
(n)
ab = 1.

Solution 1.3

1. P + Q (sum):
Never a transition matrix. Since each row of P and Q sums to 1, the sum of the elements of
a row of P + Q will sum to 1 + 1 = 2, which does not satisfy the condition that each row
should sum to 1.

2. PQ (product):
Always a transition matrix. Since all elements will be non-negative, we must check that the
rows sum up to one. Indeed, fixing a row i and letting the size of the matrices be n × n, we
have:

n∑
j=1

(PQ)ij =
n∑

j=1

n∑
k=1

pikqkj =
n∑

k=1
pik

 n∑
j=1

qkj

 =
n∑

k=1
pik = 1.

Note: This transition matrix corresponds to the Markov chain consisting of taking one step
according to each set of transition probabilities.

3. P t (transposition):
Not necessarily a transition matrix. As a counterexample, consider the matrix in Quiz 1.1.
Note: The transpose will be a transition matrix if and only if the matrix is doubly stochastic,
meaning its columns also sum up to 1.

4. P −1 (inverse):
Not necessarily a transition matrix. To begin with, P −1 might not exist. Even if it does, one
can easily find counterexamples that violate one or both of the defining properties.

5. 1
e exp(P ) (rescaled exponential):
Always a transition matrix. Indeed, exp(P ) is an infinite sum of matrices with non-negative
terms, so it has non-negative terms. It remains to show that its columns sum to 1. For a
fixed i, we have:

n∑
j=1

(exp(P ))ij =
n∑

j=1

∞∑
k=0

(P k)ij

k! =
∞∑

k=0

n∑
j=1

(P k)ij

k! =
∞∑

k=0

1
k! = e.

Note: Try to think of the probabilistic interpretation of this transition matrix after studying
the chapter on continuous-time Markov chains.

6. 1
2 (P 10 + Q11):
Always a transition matrix. Both P 10 and Q11 are powers of transition matrices, so they
remain transition matrices. Taking their average also results in a matrix whose row sums
remain 1, and the elements remain non-negative.

Solution 1.4 [Markov chains]

i) (a) X1 is a Markov chain, as shown in (b).
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(b) The initial distribution of X1
0 is uniform on S, i.e. µ = 1/6 ·

(
δ1 + . . . + δ6)

. It is easy to
check that the transition probability P = (pij)i,j∈S is given by pij = 1

6 , for all i and j.
(c) The corresponding graph is a complete graph where all arrows have a weight of 1

6 :

1

2

3

4

5

6

(d) Since the random variables X1
n are independent and uniformly distributed in {1, ..., 6},

we have that p
(n)
ij = 1

6 .

ii) (a) X2 is a Markov chain, as shown in (b).
(b) We determine the initial distribution µ and a transition probability P such that X2 ∼

MC(µ, P ). The transition probability P = (pij)i,j∈S is given by

pij =


0 if j < i,
i
6 if j = i,
1
6 if j > i.

Indeed, if X2
n−1 = i, then we have Xn = i if and only if ξn ≤ i, which happens with

probability i/6, and we have Xn = j for j > i if and only if ξn = j, which happens
with probability 1/6. The initial distribution of X2

0 is, once again, uniform on S, i.e.
µ = 1/6 ·

(
δ1 + . . . + δ6)

.
(c) We can represent P by the following weighted graph.

1 3 4 52 6

2
6

3
6

4
6

5
6

6
6

1
6

Here, all weights on the directed edges (i, j) with j > i are equal to 1/6.
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(d) For every i, j ∈ {1, . . . , 6} and every n ≥ 1, we have

p
(n)
ij = 0 if j < i,

p
(n)
ij =

(
i

6

)n

if j = i,

p
(n)
ij =

(
j

6

)n

−
(

j − 1
6

)n

if j > i.

iii) (a) X3 is a not Markov chain. We note that
{X3

2 = 1, X3
3 = 6} = {X3

2 = 1, X3
3 = 6, X3

4 = 6} = {ξ1 = 1, ξ2 = 1, ξ3 = 6},

and so
P[X3

2 = 1, X3
3 = 6] = P[X3

2 = 1, X3
3 = 6, X3

4 = 6] = (1/6)3.

If X ∼ MC(µ, P ) for some initial distribution µ and transition probability P , then it
would follow from Definition 1.3 that

p66 = P[X3
2 = 1, X3

3 = 6, X3
4 = 6]

P[X3
2 = 1, X3

3 = 6] = 1, thus p
(n)
66 = 1, ∀n ≥ 1.

But this contradicts the definition of X since the stochastic process can leave the state 6
with positive probability.

iv) (a) X4 is a Markov chain, as shown in (b).
(b) We determine the initial distribution µ and a transition probability P such that X4 ∼

MC(µ, P ). The transition probability P = (pij)i,j∈S is given by

pij =


6−i

6 if j = i + 1,
i
6 if j = i,

0 otherwise.

Indeed, if X4
n−1 = i, then we have X4

n = i + 1 if and only if ξn takes a new value, which
happens with probability (6 − i)/6, and we have X4

n = i if and only if ξn takes no new
value, which happens with probability i/6. The initial distribution of X4

0 is µ = δ1.
(c) We can represent P by the following weighted graph.

1 3 4 52 6

2
6

3
6

4
6

5
6

6
6

1
6

5
6

4
6

3
6

2
6

1
6

(d) In this case, it requires a bit more work to determine the n-step transition probabilities.
We proceed by diagonalizing the matrix P of the transition probability, given by

P =


1/6 5/6 0 0 0 0
0 2/6 4/6 0 0 0
0 0 3/6 3/6 0 0
0 0 0 4/6 2/6 0
0 0 0 0 5/6 1/6
0 0 0 0 0 6/6

 .
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Since it is an upper triangular matrix, its eigenvalues are equal to the diagonal entries. By
computing the associated eigenvectors, we obtain the matrix Q with the right eigenvectors
as columns, given by

Q =


1 5 10 10 5 1
0 1 4 6 4 1
0 0 1 3 3 1
0 0 0 1 2 1
0 0 0 0 1 1
0 0 0 0 0 1

 with Q−1 =


1 −5 10 −10 5 −1
0 1 −4 6 −4 1
0 0 1 −3 3 −1
0 0 0 1 −2 1
0 0 0 0 1 −1
0 0 0 0 0 1


Thus,

P n = Q ·


(1/6)n 0 0 0 0 0

0 (2/6)n 0 0 0 0
0 0 (3/6)n 0 0 0
0 0 0 (4/6)n 0 0
0 0 0 0 (5/6)n 0
0 0 0 0 0 (6/6)n

 · Q−1,

which allows to deduce all transition probabilities.

v) (a) X5 is a Markov chain, as shown in (b).
(b) We determine the initial distribution µ and a transition probability P such that X5 ∼

MC(µ, P ). The state space is N. The transition probability P = (pij)i,j∈S is given by

pij =


1
6 if j = 0,
5
6 if j = i + 1
0 otherwise.

Indeed, we have X5
n = 0 if and only if ξn = 6, which happens with probability 1/6.

If ξn ̸= 6, which happens with probability 5/6, we have X5
n = X5

n−1 + 1. The initial
distribution of X5

0 is µ = 1/6 · δ0 + 5/6 · δ1.
(c) We can represent P by the following weighted graph:

0 1 2
. . .
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(d) For every n ≥ 1, we have For every j ∈ N, i ∈ N ∪ {∞}, and every n ≥ 1, we have

p
(n)
ij =

(
5
6

)n

if n = j − i,

p
(n)
ij = 1

6 ·
(

5
6

)j

if j ≤ n − 1,

and 0 otherwise.
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Solution 1.5 [Deterministic Markov chains]

(a) A deterministic sequence (xn)n≥0 is a Markov chain if and only if there exists a function
Φ : S → S such that for all n ≥ 0, xn+1 = Φ(xn).
( ⇐= ): It follows directly that (xn)n≥0 is a Markov chain MC(µ, P ) with µ = δx0 and
transition probability P given by pij = 1j=Φ(i).
( =⇒ ): Given (xn)n≥0, we define Φ : S → S by

Φ(x) =
{

xn+1 if ∃n ≥ 0 s.t. xn = x,

x if ∀n ≥ 0, xn ̸= x.

Let x, y ∈ S. The function Φ is well-defined since for every n ≥ 0 with xn = x,

pxy = P[xn+1 = y, xn = x]
P[xn = x] = 1xn+1=y,

where we used Definition 1.3 in the first inequality and the fact that the sequence is
deterministic in the second inequality.

(b) There are three possible choices for the initial distribution, δ1, δ2, δ3. Using the previous
exercise, we can choose Φ(i) ∈ {1, 2, 3} for every i ∈ {1, 2, 3}, i.e. there are 33 = 27 possible
choices for the transition probability P . Thus, in total there are 81 pairs (µ, P ) .
Note that we are counting here the total amount of different pairs (µ, P ) that yield deterministic
Markov Chains. One can also count the total number of classes of deterministic Markov
Chains with respect to equivalence in law of the resulting process, which is 33.
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