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Solution 10.1

(a) 1. True, by Theorem 6.6 of the lecture notes.
2. False. Theorem 6.6 guarantees uniqueness of solutions to the renewal equation, so g + 10

cannot also be a solution.
3. False. Again, by Theorem 6.6, the solution is of the form

h + 10 + (h + 10) ⋆ m = g + 10 + 10 ⋆ m = g + 10 + 10F.

Thus, g + 10 is not a solution.
4. True, as shown in the previous question.
5. False. If it were true, we would have

g + F = h + F + g ⋆ F = g + F,

implying m(t) = F (t) for all t, which is never the case.

(b) 1. False. For instance, take F (t) = 1{t≥2} and h(t) = 1{t∈[0,1]}. Then it is easy to check
that the solution g to the renewal equation oscillates between 0 and 1.

2. False. This would be the conclusion of the Smith key renewal theorem if F were non-
lattice. However, for lattice distributions, the conclusion fails — see the counterexample
in (1).

3. True, by the uniqueness of solutions to the renewal equation and the Smith key renewal
theorem.

4. False. See the counterexample from (1).
5. True. This follows directly from applying the renewal equation at t + s.

Solution 10.2
We have:

m(s + t) = E[Ns+t] = E

∑
k≥1

1{Sk∈[0,s+t]}

 = E

∑
k≥1

(
1{Sk∈[0,t]} + 1{Sk∈(t,s+t]}

)
= E

∑
k≥1

1{Sk∈[0,t]}

 + E

∑
k≥1

1{Sk∈(t,s+t]}


= m(t) + E

∑
k≥1

1{Sk∈(t,s+t]}

 ≤ m(t) + E

∑
k≥1

1{Sk∈[t,s+t]}

 .

We now aim to show that the second term is bounded above by 1 + m(s). The reason it is not
exactly equal to m(s) is that we lack control over where the interval [t, s + t] starts relative to the
last arrival time. We write:
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E

∑
k≥1

1{Sk∈[t,s+t]}

 = E

1{SNt+1∈[t,s+t]} +
∑

k≥Nt+2
1{Sk∈[SNt+1,s+t]}

 .

Here we have separated the first arrival after time t from the remaining arrivals that occur in
the interval [t, t + s]. We can now bound the first term by 1, and shift the second term to start
from zero:

E

1{SNt+1∈[t,s+t]} +
∑

k≥Nt+2
1{Sk∈[SNt+1,s+t]}

 ≤ 1 + E

∑
k≥1

1{Sk∈[0,s+t−SNt+1]}


≤ 1 + E

∑
k≥1

1{Sk∈[0,s]}


= 1 + m(s),

where the last inequality follows from the fact that s + t − SNt+1 ≤ s almost surely.

Solution 10.3
(a) Let us define h(t) = 1{t≤x}(1 − F (t)) for t ≥ 0. Note that h ≥ 0, it is measurable, continuous

a.e. and bounded by 1. Also it vanishes outside the compact interval [0, x]. This implies that
h is directly Riemann integrable. Since F is non-lattice, by Smith’s key renewal theorem it
follows that

lim
t→∞

ax(t) = 1
E[T1]

∫ ∞

0
h(t)dt = 1

µ

∫ x

0
(1 − F (t))dt =: G(x).

(b) To see that G is a distribution function, we note that

lim
x→∞

G(x) = 1
µ

∫ ∞

0
P[T1 > t]dt = E[T1]

µ
= 1.

This means that At converges in distribution to a random variable with distribution G.

Solution 10.4
(a) Note that h ≥ 0 and it is a non increasing function. Also∫ ∞

0
h(t)dt =

∫ ∞

0
P[U1 > t]dt = E[U1] < ∞,

which means that h is directly Riemann integrable. Since F is non-lattice and g is solution of
the equation g = h + g ∗ F , we know by Smith’s key renewal theorem that

lim
t→∞

g(t) = 1
E[T1]E[U1] = E[U1]

E[U1] + E[V1] .

Solution 10.5
For fixed k ≥ 0,

P[Xn = k] = n!
k!(n − k)!p

k
n(1 − pn)n−k (1)

= n · (n − 1) · . . . · (n − k + 1)
n · n · . . . · n︸ ︷︷ ︸

n→∞−−−−→1

· 1
k! · (pn · n)k︸ ︷︷ ︸

n→∞−−−−→λk

(
1 − pn · n

n

)n−k
, (2)
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and since pn·n
n · (n − k) → λ, one has (1 − pn·n

n )n−k → e−λ as n → ∞. Hence,

P[Xn = k] −→ e−λ

k! λk = P[X = k], (3)

and for y ∈ R,

FXn
(y) = P[Xn ≤ y] =

∑
k≤y

P[Xn = k] n→∞−−−−→
∑
k≤y

P[X = k] = P[X ≤ y] = FX(y). (4)
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