Applied Stochastic Processes

Solution sheet 11

Solution 11.1

(a) 1. True. By assumption, U is a random variable taking values in [0, 5]. Therefore, the random variable

$$\delta_U : \begin{cases} \Omega & \to \mathcal{M} \\ \omega & \mapsto \delta_{U(\omega)} \end{cases}$$

is well-defined since for all $u \in [0, 5]$, δ_u is a σ -finite measure on $([0, 5], \mathcal{B}([0, 5]))$ taking values in $\{0, 1\}$. Hence, δ_U is point process on $([0, 5], \mathcal{B}([0, 5]))$.

- 2. True. For all $u \in [0,5]$, $2 \cdot \delta_u$ is a σ -finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ taking values in $\{0,2\}$. As in (b), we deduce that $2 \cdot \delta_U$ is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 3. True. The proof is analogous as 1. using the random variable 2U.
- 4. False. U is not measure-valued.
- 5. False. The measure takes the value $\frac{1}{2}$ on the set [0, 5].
- (b) 1. False. $\varphi_X(t) = e^{\lambda(e^{it}-1)}$.
 - 2. True. This is the Poisson Central Limit Theorem.
 - 3. True. One has that:

$$\lim_{n \to \infty} \mathbf{P}(|X_n| \le \varepsilon) \ge \lim_{n \to \infty} \mathbf{P}(X_n = 0) = \lim_{n \to \infty} e^{-\frac{1}{n}} = 1.$$

- 4. False. Geometric random variables are the only discrete random variable with the loss of memory property.
- 5. True. We can readily compute both quantities and check they are indeed equal to $\left(\frac{1-e^{-2}}{2}\right)^2$. Alternatively, we can use a coupling argument. Let $K \sim \text{Poisson}(2)$ and let X_n be a family of i.i.d Bernuilli random variables with parameter $\frac{1}{2}$. Now define:

$$M = \sum_{j=1}^{K} X_j \quad N = \sum_{j=1}^{K} 1 - X_j$$

As seen in class, these two random variables are independent and have a Poisson(1) distribution. We now let $Y_1 = 1 - X_1$ and $Y_j = X_j$ for all $j \ge 2$. Note that the variables Y_n are also i.i.d Bernuilli distributed, but we changed the value of first one. Now define:

$$M' = \sum_{j=1}^{K} Y_j$$
 $N' = \sum_{j=1}^{K} 1 - Y_j$

Naturally, $M', N' \sim \text{Poisson}(1)$, but they are coupled with M and N in such a way so that they have different parity pairwise. Now it is easy to check that:

$$\{M \text{ is odd}, N \text{ is odd}\} = \{M' \text{ is even}, N' \text{ is even}, M' + N' \neq 0\}$$

Solution 11.2

(a) Let $n \ge 0$. Using the independence of X_1, \ldots, X_k in the first equality and their Poisson distribution in the second equality, we obtain

$$\mathbb{P}[X_1 + \ldots + X_k = n] = \sum_{\substack{i_1, \ldots, i_k \ge 0\\ \text{s.t. } i_1 + \ldots + i_k = n}} \mathbb{P}[X_1 = i_1] \cdots \mathbb{P}[X_k = i_k]$$
$$= e^{-(\lambda_1 + \ldots + \lambda_k)} \sum_{\substack{i_1, \ldots, i_k \ge 0\\ \text{s.t. } i_1 + \ldots + i_k = n}} \frac{\lambda_1^{i_1}}{i_1!} \cdots \frac{\lambda_k^{i_k}}{i_k!}$$
$$= e^{-(\lambda_1 + \ldots + \lambda_k)} \frac{1}{n!} \sum_{\substack{i_1, \ldots, i_k \ge 0\\ \text{s.t. } i_1 + \ldots + i_k = n}} \binom{n}{i_1, \ldots, i_k} \lambda_1^{i_1} \cdots \lambda_k^{i_k}$$
$$= e^{-(\lambda_1 + \ldots + \lambda_k)} \frac{(\lambda_1 + \ldots + \lambda_k)^n}{n!},$$

which shows that $X_1 + \ldots + X_k \sim \text{Pois}(\lambda_1 + \ldots \lambda_k)$.

(b) For $k \ge 1$, define the partial sums $\bar{X}_k := \sum_{i=1}^k X_i$. We first note that $(\bar{X}_k)_{k\ge 1}$ is almost surely a monotone sequence and thus converges almost surely. Hence, $\bar{X}_{\infty} := \sum_{i=1}^{\infty} X_i$ is a well-defined random variable taking values in $\mathbb{N} \cup \{+\infty\}$, and we are left with determining its distribution.

Case 1: $\lambda = \sum_{i=1}^{\infty} \lambda_i = \infty$. In this case, a union bound implies that

$$\mathbb{P}[\bar{X}_{\infty} < \infty] = \mathbb{P}[\exists I \ge 1, \forall i > I : X_i = 0] \le \sum_{I \ge 1} \mathbb{P}[\forall i > I : X_i = 0] = \sum_{I \ge 1} \exp(-\sum_{\substack{i > I \\ \neg \infty}} \lambda_i) = 0.$$

Hence, $\bar{X}_{\infty} = \infty$ almost surely.

Case 2: $\lambda = \sum_{i=1}^{\infty} \lambda_i < \infty$. From part (a), we know that \bar{X}_k is Poisson-distributed with parameter $\sum_{i=1}^{k} \lambda_i$. Hence, for all $n \ge 0$,

$$\mathbb{P}[\bar{X_k} = n] = \exp\left(-\sum_{i=1}^k \lambda_i\right) \cdot \frac{(\sum_{i=1}^n \lambda_i)^n}{n!} \longrightarrow \exp(-\lambda) \cdot \frac{\lambda^n}{n!} \quad \text{as } k \to \infty,$$

and so, \bar{X}_{∞} is $\text{Pois}(\lambda)$ -distributed.

Solution 11.3

(a) We will prove that the preimage of $C_{k,B}$ under \widetilde{M} for any $k \in \mathbb{N}$ and $B \in \mathcal{E}$ is in \mathcal{F} . We have:

$$\widetilde{M}^{-1}(C_{k,B}) = \{\omega \in \Omega \mid \widetilde{M}_{\omega} \in C_{k,B}\} = (G \cap M^{-1}(C_{k,B})) \cup (G^c \cap \{0 = k\}) \in \mathcal{F}$$

where in the last step we used the fact that M is measurable. \Box

(b) Let $\widetilde{M}_1, \widetilde{M}_2$ be the processes corresponding to G_1, G_2 respectively. Then

$$\mathbf{P}[\widetilde{M}_1 \neq \widetilde{M}_2] \le \mathbf{P}[(G_1 \cap G_2)^c] = 0.$$

This directly implies that, $\forall A \in \mathcal{B}(M)$, we have that $\mathbf{P}(\widetilde{M}_1 \in A) = \mathbf{P}(\widetilde{M}_2 \in A)$.

Solution 11.4

To show $(i) \iff (ii)$, we note that by definition,

$$P_M = P_{M'} \iff \forall A \in \mathcal{B}(\mathcal{M}), P_M(A) = P_{M'}(A) \iff \forall A \in \mathcal{B}(\mathcal{M}), \mathbf{P}[M \in A] = \mathbf{P}[M' \in A].$$

The implications $(ii) \implies (iii) \implies (iv)$ are clear by inclusion. To show $(iii) \implies (ii)$, we use Dynkin's lemma. The family

$$\mathcal{B} := \{\{\eta : \eta(B_1) = n_1, \dots, \eta(B_k) = n_k\} : k \ge 1; B_1, \dots, B_k \in \mathcal{E} \text{ disjoint } ; n_1, \dots, n_k \in \mathbb{M}\} \subset \mathcal{B}(\mathcal{M})$$

is a π -system and $\sigma(\mathcal{B}) = \mathcal{B}(\mathcal{M})$ by definition. The family

$$\mathcal{D} := \{A \in \mathcal{B}(\mathcal{M}) : \mathbf{P}[M \in A] = \mathbf{P}[M' \in A]\}$$

is a Dynkin-system and it contains \mathcal{B} by assumption. Hence, we conclude using Dynkin's lemma that $\mathcal{D} = \mathcal{B}(\mathcal{M})$ and so (ii) holds.

To show $(iv) \implies (iii)$, we consider B_1, \ldots, B_k and n_1, \ldots, n_k for some $k \ge 1$ and define the disjoint sets

$$C_1 = B_1, \ C_2 = B_2 \setminus B_1, \ \dots, \ C_k = B_k \setminus \bigcup_{i=1}^{k-1} B_i.$$

(*iii*) then follows from (*iv*) by summing over all possible ways how the points could be distributed over the disjoint sets C_1, \ldots, C_k under the constraints $M(B_1) = n_1, \ldots, M(B_k) = n_k$.