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Solution 11.1

(a) 1. True. By assumption, U is a random variable taking values in [0, 5]. Therefore, the
random variable

δU :
{

Ω → M
ω 7→ δU(ω)

is well-defined since for all u ∈ [0, 5], δu is a σ-finite measure on ([0, 5], B([0, 5])) taking
values in {0, 1}. Hence, δU is point process on ([0, 5], B([0, 5])).

2. True. For all u ∈ [0, 5], 2 · δu is a σ-finite measure on (R, B(R)) taking values in {0, 2}.
As in (b), we deduce that 2 · δU is a point process on (R, B(R)).

3. True. The proof is analogous as 1. using the random variable 2U .
4. False. U is not measure-valued.
5. False. The measure takes the value 1

2 on the set [0, 5].

(b) 1. False. φX(t) = eλ(eit−1).
2. True. This is the Poisson Central Limit Theorem.
3. True. One has that:

lim
n−→∞

P(|Xn| ≤ ε) ≥ lim
n−→∞

P(Xn = 0) = lim
n−→∞

e− 1
n = 1.

4. False. Geometric random variables are the only discrete random variable with the loss
of memory property.

5. True. We can readily compute both quantities and check they are indeed equal to(
1−e−2

2

)2
. Alternatively, we can use a coupling argument. Let K ∼ Poisson(2) and let

Xn be a family of i.i.d Bernuilli random variables with parameter 1
2 .

Now define:

M =
K∑

j=1
Xj N =

K∑
j=1

1 − Xj

As seen in class, these two random variables are independent and have a Poisson(1)
distribution. We now let Y1 = 1 − X1 and Yj = Xj for all j ≥ 2. Note that the variables
Yn are also i.i.d Bernuilli distributed, but we changed the value of first one. Now define:

M ′ =
K∑

j=1
Yj N ′ =

K∑
j=1

1 − Yj

Naturally, M ′, N ′ ∼ Poisson(1), but they are coupled with M and N in such a way so
that they have different parity pairwise. Now it is easy to check that:

{M is odd, N is odd} = {M ′ is even, N ′ is even, M ′ + N ′ ̸= 0}

1 / 3



Applied Stochastic Processes, FS 2025
D-MATH Solution sheet 11

Solution 11.2

(a) Let n ≥ 0. Using the independence of X1, . . . , Xk in the first equality and their Poisson
distribution in the second equality, we obtain

P[X1 + . . . + Xk = n] =
∑

i1,...,ik≥0
s.t. i1+...ik=n

P[X1 = i1] · · ·P[Xk = ik]

= e−(λ1+...+λk)
∑

i1,...,ik≥0
s.t. i1+...+ik=n

λ1
i1

i1! · · · λk
ik

ik!

= e−(λ1+...+λk) 1
n!

∑
i1,...,ik≥0

s.t. i1+...+ik=n

(
n

i1, . . . , ik

)
λ1

i1 · · · λk
ik

= e−(λ1+...+λk) (λ1 + . . . + λk)n

n! ,

which shows that X1 + . . . + Xk ∼ Pois(λ1 + . . . λk).

(b) For k ≥ 1, define the partial sums X̄k :=
∑k

i=1 Xi. We first note that (X̄k)k≥1 is almost
surely a monotone sequence and thus converges almost surely. Hence, X̄∞ :=

∑∞
i=1 Xi is a

well-defined random variable taking values in N ∪ {+∞}, and we are left with determining its
distribution.
Case 1: λ =

∑∞
i=1 λi = ∞. In this case, a union bound implies that

P[X̄∞ < ∞] = P[∃I ≥ 1, ∀i > I : Xi = 0] ≤
∑
I≥1

P[∀i > I : Xi = 0] =
∑
I≥1

exp(−
∑
i>I

λi︸ ︷︷ ︸
=∞

) = 0.

Hence, X̄∞ = ∞ almost surely.
Case 2: λ =

∑∞
i=1 λi < ∞. From part (a), we know that X̄k is Poisson-distributed with

parameter
∑k

i=1 λi. Hence, for all n ≥ 0,

P[X̄k = n] = exp
(

−
k∑

i=1
λi

)
·

(
∑n

i=1 λi)n

n! −→ exp(−λ) · λn

n! as k → ∞,

and so, X̄∞ is Pois(λ)-distributed.

Solution 11.3

(a) We will prove that the preimage of Ck,B under M̃ for any k ∈ N and B ∈ E is in F . We have:

M̃−1(Ck,B) = {ω ∈ Ω | M̃ω ∈ Ck,B} = (G ∩ M−1(Ck,B)) ∪ (Gc ∩ {0 = k}) ∈ F

where in the last step we used the fact that M is measurable. □

(b) Let M̃1, M̃2 be the processes corresponding to G1, G2 respectively. Then

P[M̃1 ̸= M̃2] ≤ P[(G1 ∩ G2)c] = 0.

This directly implies that, ∀A ∈ B(M), we have that P(M̃1 ∈ A) = P(M̃2 ∈ A).
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Solution 11.4
To show (i) ⇐⇒ (ii), we note that by definition,

PM = PM ′ ⇐⇒ ∀A ∈ B(M), PM (A) = PM ′(A) ⇐⇒ ∀A ∈ B(M), P[M ∈ A] = P[M ′ ∈ A].

The implications (ii) =⇒ (iii) =⇒ (iv) are clear by inclusion.
To show (iii) =⇒ (ii), we use Dynkin’s lemma. The family

B := {{η : η(B1) = n1, . . . , η(Bk) = nk} : k ≥ 1; B1, . . . , Bk ∈ E disjoint ; n1, . . . , nk ∈ M} ⊂ B(M)

is a π-system and σ(B) = B(M) by definition. The family

D := {A ∈ B(M) : P[M ∈ A] = P[M ′ ∈ A]}

is a Dynkin-system and it contains B by assumption. Hence, we conclude using Dynkin’s lemma
that D = B(M) and so (ii) holds.

To show (iv) =⇒ (iii), we consider B1, . . . , Bk and n1, . . . , nk for some k ≥ 1 and define the
disjoint sets

C1 = B1, C2 = B2 \ B1, . . . , Ck = Bk \
k−1⋃
i=1

Bi.

(iii) then follows from (iv) by summing over all possible ways how the points could be distributed
over the disjoint sets C1, . . . , Ck under the constraints M(B1) = n1, . . . , M(Bk) = nk.
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