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Solution 12.1

(a) 1. True. For B ∈ B(R),

T#µ(B) = µ
(
T −1(B)

)
= µ(B × [0, 2]) = 2 · LebR(B).

Hence, T #µ is σ-finite and T #M is a Poisson point process on R with intensity measure
T#µ = 2 · Leb.

2. False. For B ∈ B(R),

T#µ(B) = µ(B × R) =
{

0 if LebR(B) = 0,

∞ if LebR(B) > 0.

Hence, T#µ is not σ-finite and T#M is a not a Poisson point process on R.
3. True. For B ∈ B([0, 1]),

T#µ(B) = 4 · Leb[0,1](B).
Hence, T#µ is σ-finite and T#M is a Poisson point process on [0, 1] with intensity
measure T#µ = 4 · Leb.

4. True. We note that T : R2 → R2 is a C1-diffeomorphism and T −1(y1, y2) = (y2/2, y1/2).
Therefore, for all (y1, y2) ∈ R2, | det(dT −1(y1, y2))| = 1/4. Hence, T#µ = 1/4 · Leb is
σ-finite and T #M is a Poisson point process on R with intensity measure T #µ = 1/4·Leb.

5. True. By the restriction theorem, the restricted processes M[0,1]2 , M[0,2]2 , and M[2,3]2

are Poisson point processes with intensity measure Leb (on the subsets). Again by the
restriction theorem, M[0,1]2 is independent of M[2,3]2 and M[0,2]2 is independent of M[2,3]2

(note that M({(2, 2)}) = 0 a.s.). The restricted processes M[0,1]2 and M[0,2]2 are not
independent. For example, it can be seen by noticing that M[0,2]2([0, 2]2) = 0 implies
M[0,1]2([0, 1]2) = 0.

(b) 1. True. This is immediate from the definition of product measure on rectangles.
2. True. The product measure of two σ-finite measures taking values in N ∪ {∞} is itself a

σ-finite measure taking values in N ∪ {∞}.
3. True. Showing that N is a point process on (E × F, E ⊗ F) is equivalent to showing that

for all C ∈ E ⊗ F , N(C) is a random variable. By applying Dynkin’s lemma, it actually
suffices to show that N(C) is a random variable for sets of the form C = A × B with
A ∈ E and B ∈ F (which form a π-system). But in this case, we have by the definition
of the product measure N(A × B) = M(A) · M ′(B), which is a product of two random
variables and thus a random variable.

4. False. No, N is not a Poisson point process. To illustrate this, we consider the following
example: Let E = F = R, µ = ν = Leb, and take M and M ′ to be independent. Then{

N([1, 2]2) = 1, N([1, 2] × [3, 4]) = 0
}

=
{

M([1, 2]) = 1, M ′([1, 2]) = 1, M ′([3, 4]) = 0
}

,

and so

P
[
N([3, 4]2) = 0|N([1, 2]2) = 1, N([1, 2] × [3, 4]) = 0

]
= 1 ̸= P

[
N([3, 4]2) = 0

]
,

which shows that N cannot be a Poisson point process as it contradicts the independence
property on disjoint sets.
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5. False. See 4.

Solution 12.2

(a) To see that the restricted measures are diffuse, it suffices to note that for every i ∈ N,

µi({x}) ≤ µ({x}) = 0, ∀x ∈ Ei,

and so µi is diffuse.
The fact that ME1 , ME2 , . . . are independent Poisson point processes with respective intensities
µE1 , µE2 , . . . follows directly from the restriction property in Section 6.8.

(b) Fix any i ∈ N. Since µ(Ei) < ∞, we can use Proposition 6.10 to the explicitly construct a
Poisson point process with intensity measure µEi as

M̃Ei
=

Z∑
j=1

δXj
,

where Z ∼ Pois(µ(Ei)) and Xj ∼ µEi
(·)

µEi
, j ≥ 1, are independent. Since being simple is a

property of the law and P
M̃Ei

= PMEi
by Proposition 6.14, it suffices to prove that M̃Ei is

almost surely simple. To this end, we compute

P[M̃Ei
is not simple] ≤ P[∃j ̸= k : Xj = Xk] ≤

∑
j ̸=k

P[Xj = Xk] = 0,

where we used in the last equality that

P[Xj = Xk] =
∫

Ei

P[Xj = x]︸ ︷︷ ︸
=0

µEi(dx)
µ(Ei)

by the independence of Xj and Xk. This concludes that M̃Ei and thereby MEi is almost
surely simple.

(c) Since P[MEi is simple] = 1 by part (b), we deduce that

P[M is simple] = P[
∞⋂

i=1
{MEi

is simple}] = 1.

Solution 12.3

(a) We consider the map T : Rd → [0, ∞) defined by T (x) = ∥x∥2 =
√

x2
1 + · · · + x2

d, which is
a continuous function, and so it is measurable. Since T#µ is σ-finite (by considering the
sequence ([0, n])n≥1), the mapping theorem implies that T#M is a Poisson point process on
[0, ∞) with intensity measure T#µ.
Let s ≥ r ≥ 0. Then we have

T#µ([r, s]) = µ
(
T −1([r, s])

)
= µ

(
Bs \ Br

)
= λ · (|Bs| − |Br|) = λ · πd/2

Γ(d/2 + 1) · (sd − rd).

More generally, T#µ(B) = λ · Leb(T −1(B)) for B ∈ B([0, ∞)).
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(b) Fix a sequence (rk)k≥0 with |Brk
| = k. Using the restriction property from Section 6.8, we

note that
(
M(Brk

\ Brk−1)
)

k≥1 is a sequence of independent, identically distributed random
variables with

M(Br1 \ Br0) ∼ Pois(λ).

Hence, by the strong law of large numbers, we have almost surely

lim
r→∞

M(Br)
|Br|

= lim
n→∞

M(Brn
)

|Brn |
= lim

n→∞

∑n
k=1 M(Brk

\ Brk−1)
n

= E[M(Br1 \ Br0)] = λ.

Solution 12.4
⇒) Since the singletons belong to B(E), we can define, for all x ∈ E, Nx = M({x}), which by

the definition of Poisson point process already have the required law. The fact that the family
(Nx)x∈E is independent follows directly from the independence of Poisson point processes on disjoint
sets.

⇐) Let B1, . . . , Bk ∈ P(E) be disjoint. For all i,

M(Bi) =
∑

x∈Bi

M({x}) =
∑

x∈Bi

Nx (1)

because {x} ∈ P(E) for all x. This directly implies that M(Bi) ∼ Poi
(∑

x∈Bi
µ({x})

)
=

Poi (µ(Bi)), since the sum of Poisson random variables is again Poisson.

It remains to prove the independence of the random variables M(B1), ..., M(Bk). But this
follows from expression (1) and the fact that all the Nx are independent.
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