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Solution 14.1

(a) 1. True. This is an application of the three equivalences theorem for the Standard Poisson
Process seen in the lectures.

2. False. We can take as a counterexample (2Nt)t≥0, where (Nt)t≥0 is a Poisson Process.
3. True. These conditions readily imply those of question 1.
4. False. We can take as a counterexample a Simple Random Walk.
5. True. This is just the definition of a Standard Poisson Process as seen in the lectures.

(b) 1. False. In order to be a Poisson process, the stochastic process (Nt)t≥0 would also need
to be almost surely non-decreasing and right-continuous (see the definition of counting
process in Section 7.1).

2. False. Let U be a uniform random variable taking values in (0, 1]. Define (Nt)t≥0 by

Nt :=
∞∑

i=0
1i+U≤t.

It follows directly from the definition that (Nt)t≥0 is a counting process and it makes
jumps of size 1 at the times U, 1 + U, 2 + U, . . .. The process has stationary increments
since for any t > s ≥ 0, the increment Nt − Ns only depends on t − s. To show that the
increments are not independent, it suffices to note that

N1/2 − N0 = 10<U≤1/2 and N1 − N1/2 = 11/2<U≤1 = 1 − (N1/2 − N0).

3. True. By definition, a counting process is almost surely non-decreasing and right-
continuous. In particular, left limits almost surely exist due to the monotonicity of the
process.

4. True. By definition, a counting process almost surely is non-decreasing and takes values
in N. Hence, for any t ≥ 0, the number of jumps in [0, t] is at most Nt. Since the random
variable Nt is almost surely finite, the same holds for the number of jumps.

5. True. The sum of n exponentially distributed random variables with parameter λ is a
Gamma(n, λ) distribution.

Solution 14.2

(a) For the choice ρ(u) = λ for all u ≥ 0, we obtain for 0 ≤ s < t,∫ t

s

ρ(u)du = λ(t − s),

and so Nt − Ns ∼ Poisson(λ(t − s)). Hence, it follows from part (iii) of Theorem 7.2 or part
(ii) of Theorem 7.3 from the 2023 lecture notes that (Nt)t≥0 is a Poisson process with rate λ.
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(b) In general, the increments are not stationary. In part (a), we have seen that the increments
are stationary if ρ is constant. Conversely, if ρ is not constant, we can choose u, v ≥ 0 such
that ρ(u) > ρ(v). Then for some h > 0 sufficiently small,∫ u+h

u

ρ(u)du >

∫ v+h

v

ρ(v)dv,

and so the increments Nu+h − Nu and Nv+h − Nv do not have the same distribution.

(c) The intensity measure µρ of the Poisson point process M is defined by

µρ(B) =
∫

B

ρ(u)du

for B ∈ B(R+).

(d) In general, S1 and S2 − S1 are not independent as the following result shows.
Claim: S1 and S2 − S1 are independent if and only if ρ is constant.
( ⇐= ): If ρ is constant, then by part (a), (Nt)t≥0 is actually a Poisson process with rate
λ = ρ. Hence, the inter-arrival times are independent Exp(λ)-distributed random variables.
( =⇒ ): Let s, t ≥ 0. For every ϵ ∈ (0, s), we have by the independence of the increments that

P[t < S1 ≤ t + ϵ] = P[Nt = 0, Nt+ϵ − Nt ≥ 1] = P[Nt = 0] · P[Nt+ϵ − Nt ≥ 1],

and

P[S2 − S1 > s, t < S1 ≤ t + ϵ] = P[Nt = 0, Nt+ϵ − Nt = 1, Nt+s − Nt+ϵ = 0]
= P[Nt = 0] · P[Nt+ϵ − Nt = 1] · P[Nt+s − Nt+ϵ = 0].

By assumption, S1 and S2 − S1 are independent and so we have

P[S2 − S1 > s] = P[S2 − S1 > s | t < S1 ≤ t + ϵ] = P[Nt+s − Nt+ϵ = 0] · P[Nt+ϵ − Nt = 1]
P[Nt+ϵ − Nt ≥ 1] .

Letting ϵ → 0, it follows that

P[S2 − S1 > s] = exp
(

−
∫ t+s

t

ρ(u)du

)
,

where we have used that x·e−x

1−e−x → 1 as x → 0. This is only possible if for all s ≥ 0,
∫ t+s

t
ρ(u)du

does not depend on t. As in part (b), we conclude that ρ must be constant.

Solution 14.3
(a) The function ρ : [0, +∞) → (0, +∞) is continuous, hence integrable, and so R is well-defined

and continuous as a function of t. Since ρ is strictly positive, R is strictly increasing as a
function of t, hence injective. Finally, since

∫ ∞
0 ρ(u)du = +∞, R is surjective.

(b) Since R is a continuous, increasing bijection by part (a), R−1 : [0, +∞) → [0, +∞) is a
well-defined continuous, increasing bijection. In particular, R−1(0) = 0. This implies that
(Ñt)t≥0 is a counting process. Furthermore, for any k ≥ 1 and 0 = t0 < t1 < . . . tk, it holds
that 0 = R−1(t0) < R−1(t1) < . . . < R−1(tk), and so the independence of the increments of
Ñ follows from the independence of the increments of N . Finally, for 0 ≤ s < t,

Ñt − Ñs = NR−1(t) − NR−1(s) ∼ Pois
( ∫ R−1(t)

R−1(s)
ρ(u)du︸ ︷︷ ︸

=t−s

)
,

and so we conclude that Ñ is a Poisson process with rate 1.
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(c) As in part (c), we first note that (Nt)t≥0 is a counting process with independent increments.
Furthermore, for 0 ≤ s < t,

Nt − Ns = ÑR(t) − ÑR(s) ∼ Pois(R(t) − R(s)︸ ︷︷ ︸∫ t

s
ρ(u)du

),

and so we conclude that N is an inhomogeneous Poisson process with rate ρ.

Remark: Alternatively, it is possible to prove (b) and (c) using the mapping theorem for Poisson
point processes from Section 7.9 and the correspondence between Poisson processes and Poisson
point processes established in Theorem 7.2 from the 2023 lecture notes (as well as an analogous
result for inhomogenous Poisson processes).

Solution 14.4

(a) No. In order to be a Poisson process, the stochastic process (Nt)t≥0 would also need to be
almost surely non-decreasing and right-continuous (see the definition of counting process in
Section 7.1).

(b) Let U be a uniform random variable taking values in (0, 1]. Define (Nt)t≥0 by

Nt :=
∞∑

i=0
1i+U≤t.

It follows directly from the definition that (Nt)t≥0 is a counting process and it makes jumps
of size 1 at the times U, 1 + U, 2 + U, . . .. The process has stationary increments since for any
t > s ≥ 0, the increment Nt − Ns only depends on t − s. To show that the increments are not
independent, it suffices to note that

N1/2 − N0 = 10<U≤1/2 and N1 − N1/2 = 11/2<U≤1 = 1 − (N1/2 − N0).

(c) Yes. By definition, a counting process is almost surely non-decreasing and right-continuous.
In particular, left limits almost surely exist due to the monotonicity of the process.

(d) Yes. By definition, a counting process almost surely is non-decreasing and takes values in N.
Hence, for any t ≥ 0, the number of jumps in [0, t] is at most Nt. Since the random variable
Nt is almost surely finite, the same holds for the number of jumps.

Solution 14.5

(a) First we will show that almost surely there exists n0 such that for all n ≥ n0 we have

Tn ≤ (1 + ε)
λ

log(n/λ).

Set En := {Tn > (1+ε)
λ log(n/λ)}, then

P[En] = exp
(

−λ
(1 + ε)

λ
log(n/λ)

)
=

(
λ

n

)1+ε

,

hence
∑

n P[En] < ∞ and therefore by Borel-Cantelli, we obtain P[lim supn→∞ En] = 0. This
means that for almost every ω, there is n0(ω) such that for all n ≥ n0(ω) we have

max
n0(ω)≤k≤n

Tk(ω) ≤ (1 + ε)
λ

max
n0(ω)≤k≤n

log(k/λ) = (1 + ε)
λ

log(n/λ).
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Furthermore, we can choose n1(ω) ≥ n0(ω) such that

max
1≤k≤n0(ω)

Tk(ω) ≤ (1 + ε)
λ

log(n1(ω)/λ),

because log is a monotone function increasing to infinity. Therefore almost surely, there is n1
such that for all n ≥ n1, we have

max
1≤k≤n

Tk(ω) ≤ (1 + ε)
λ

log(n/λ).

(b) We have lim supt→∞
Nt+1

t = lim supt→∞
Nt

t and

lim sup
t→∞

Nt

t
≤ lim sup

t→∞

Nt

SNt

= lim sup
k→∞

k

Sk
= λ,

where we used in the last step that by the strong law of large numbers we have Sk/k → 1
λ

almost surely as k → ∞. This implies that almost surely there is t0 such that for all t > t0
we have

Nt + 1
t

≤ (1 + ε)λ.

(c) Almost surely for t large enough we have

Lt ≤ max
1≤k≤Nt+1

Tk ≤ (1 + ε)
λ

log
(

Nt + 1
λ

)
≤ (1 + ε)

λ
log(t(1 + ε)),

which yields lim supt→∞
Lt

log t ≤ (1+ε)
λ . As ε > 0 was arbitrarily chosen this yields the claim.
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