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Solution 2.1

(a) 1. Px(X1 = y, X0 = x) = δx(x) · pxy = pxy.

2. Px(X1 = y) = Px(X1 = y, X0 = x) = δx(x) · pxy = pxy.

3. Px(X1 = x, X0 = y) = pxxpxy, which is not equal to pxy in general.
4. Px(X1 = x, X0 = y) = δx(y) · pyx, which is not equal to pxy in general.
5. Under the measure Px, we have X0 ∼ δx. Thus, Pµ(X1 = y) = Px(X1 = y).

Thus, the correct answers are 1, 2 and 5.

(b) By definition of the n-step transition probability, we obtain

Px(Xn+2 = z, Xn+1 = y, Xn = x) = p(n)
xx · pxy · pyz

=
∑

x1,...,xn−1∈S

pxx1 · . . . pxn−1x · pxy · pyz.

Thus, 3. and 5. are equal.
2. is also equal due to the 1-step and homogeneity property of Markov Chains:

Px(X2n+2 = z, X2n+1 = y, X2n = x|Xn = x) =
= Px(X2n+2 = z|X2n+1 = y)Px(X2n+1 = y|X2n = x)Px(X2n = x|Xn = x)
= Px(Xn+2 = z|Xn+1 = y)Px(Xn+1 = y|X2 = x)Px(Xn = x)
= Px(Xn+2 = z, Xn+1 = y, Xn = x).

On the other hand, we can apply the simple Markov property with k = n, Z = 1 and
f((Xk+m)m≥0) = 1Xk+2=z,Xk+1=y to obtain

Px(Xn+2 = z, Xn+1 = y|Xn = x) = Ex(1X2=z,X1=y) = Px(X2 = z, X1 = y) = pxy · pyz.

Thus, 1. and 4. are equivalent to each other but not to Px(Xn+2 = z, Xn+1 = y, Xn = x).

(c) We have:

1. P1(X2 = 3) = p12 · p23 = 1/4.
2. P1(X3 = 3) = 0, since the SRW is at even values at odd times.
3. P1(X4 = 3) =

(4
1
)

· 1/16 = 1/4. We used that every nearest-neighbor path on Z from 1 to
3 of length 4 does exactly 3 steps “+1” and 1 step “-1”. Each such path has probability
1/16 and there are

(4
1
)

ways to choose the position of the step “-1”.
4. P1(X5X6 < 0) = 0. Two consecutive values of the SRW cannot have opposite signs.
5. P1(X2n+1 = 0) =

(2n+1
n

)
2−2n−1 for n ∈ N. Indeed, we can get to 0 after 2n + 1 steps by

summing n + 1 times "−1" and n times "+1". Each particular way of achieving this has
probability 2−n of happening, and in total there are

(2n+1
n

)
ways of choosing when the

"+1" happen.

Thus, the probabilities that are 0 are 2 and 5.
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Solution 2.2 Let us identify the set a, b, c with 1, 2, 3. Then, from the diagram we can get the
following transition matrix

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2


We know that P(Xn = a) = p

(n)
a,a = P n(1, 1). Then we need to calculate P n. We see that this

matrix is diagonalizable since it has different eigenvalues. Indeed, it characteristic equation is given
by

0 = det(λI − P ) = λ

(
λ − 1

2

)2
− 1

4 = 1
4(λ − 1)(4λ2 + 1)

and its eigenvalues are 1, i/2, −i/2. Hence, there exists an invertible matrix U such that

P = U

 1 0 0
0 i/2 0
0 0 −i/2

U−1

and then

P n = U

 1 0 0
0 (i/2)n 0
0 0 (−i/2)n

U−1

This implies that P n(1, 1) = x + y(i/2)n + z(−i/2)n for some constants x, y, z. We can calculate
the value of these constants by using the first steps of our chain

1 = P 0(1, 1) = x + y + z

0 = P 1(1, 1) = x + iy/2 − iz/2
0 = P 2(1, 1) = x − y/4 − z/4.

This give us x = 1/5, y = (i − 2)/5 and z = (2 − i)/5. Therefore

P n(1, 1) = 1
5 + i − 2

5

(
i

2

)n

+ 2 − i

5

(
−i

2

)n

= 1
5 + i − 2

5

(
1
2

)n (
cos nπ

2 + i sin nπ

2

)
+ 2 − i

5

(
1
2

)n (
cos nπ

2 − i sin nπ

2

)
= 1

5 +
(

1
2

)n(4
5 cos nπ

2 − 2
5 sin nπ

2

)
.

Solution 2.3 Define µ to be the law of X0 and set

pxy =
{
P(Xn+1 = y|Xn = x) if ∃n : P(Xn = x) > 0,

1x=y otherwise.

By homogeneity, pxy is well-defined. Furthermore, for every x0, . . . , xn ∈ S, we have

P(X0 = x0, . . . , Xn = xn) = P(X0 = x0)︸ ︷︷ ︸
=µ(x0)

·
n∏

i=1
P(Xi = xi|X0 = x0, . . . , Xi−1 = xi−1)︸ ︷︷ ︸

=P(Xi=xi|Xi−1=xi−1)=pxi−1xi

= µ(x0) · px0x1 · . . . · pxn−1xn
,

where we used the 1-step Markov property and the definitions of µ and P .
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It remains to check that P is a transition probability. Let x ∈ S. If there exists n ≥ 0 such that
P(Xn = x) > 0, then ∑

y∈E

pxy =
∑
y∈E

P(Xn+1 = y|Xn = x) = 1.

Otherwise, ∑
y∈E

pxy =
∑
y∈E

1x=y = 1.

Solution 2.4
Under P0, (Xn)n≥0 is a simple random walk (SRW) starting at 0. For i ∈ Z and k ≥ 0,

P0 (Z ′ = k|X10 = i) = P0

[( 20∑
n=10

1Xn=i

)
= k|X10 = i

]
= Pi

[( 10∑
n=0

1Xn=i

)
= k

]

= P0

[( 10∑
n=0

1Xn=0

)
= k

]
= P0 (Z = k) .

Above, the second equality follows from the simple Markov property (Theorem 1.5 in the lecture
notes with f(x0, x1, . . .) = 1{

∑10
j=0 1xj=i = k}) and the third equality follows since (i + Xn)n≥0 is

a SRW starting at i (under P0). Since the right-hand side does not depend on i, it directly follows
that

P0(Z ′ = k) =
∑
i∈Z

P0 (Z ′ = k|X10 = i) · P0 (X10 = i) = P0 (Z = k) ,

and so Z and Z ′ have the same distribution. Furthermore, we see that Z ′ and X10 are independent.The
simple Markov property implies that Z and Z ′ are conditionally independent given {X10 = i}.
Therefore, Z and Z ′ are independent as the following computation shows:

P0(Z = k, Z ′ = ℓ) =
∑
i∈Z

P0(Z = k, Z ′ = ℓ|X10 = i) · P0(X10 = i)

=
∑
i∈Z

P0(Z = k|X10 = i) · P0(Z ′ = ℓ|X10 = i) · P0(X10 = i)

= P0(Z ′ = ℓ) ·

(∑
i∈Z

P0(Z = k|X10 = i) · P0(X10 = i)
)

= P0(Z ′ = ℓ) · P0(Z = k).
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Solution 2.5

(a) We establish the inequality by induction on k. For k = 0, the inequality is trivial. For k ≥ 1,
it follows from the simple Markov property that

P0(H−N,N > k · N)

=
∑

−N+1≤x1,...,x(k−1)N ≤N−1
P0(H−N,N > k · N, X1 = x1, . . . , X(k−1)N = x(k−1)N )

=
∑

−N+1≤x1,...,x(k−1)N ≤N−1
Px(k−1)N

(H−N,N > N) · P0(X1 = x1, . . . , X(k−1)N = x(k−1)N )

Since the distance from any x ∈ {−N + 1, . . . , N − 1} to either N or −N is at most N , it
follows that Px(H−N,N ≤ N) ≥ 2−N . Thus,

P0(H−N,N > k · N)

≤ (1 − 2−N ) ·
∑

−N+1≤x1,...,x(k−1)N ≤N−1
P0(X1 = x1, . . . , X(k−1)N = x(k−1)N )

= (1 − 2−N ) · P0(H−N,N > (k − 1) · N) ≤ (1 − 2−N )k,

where we used the induction hypothesis in the last step.
We compute

E0(H−N,N ) =
∞∑

ℓ=0
P0(H−N,N > ℓ) ≤

∞∑
k=0

N · P0(H−N,N > k · N)︸ ︷︷ ︸
(1−2−N )k

= N · 2N .

(b) Assume towards a contradiction that Ex(H−N,N ) = ∞ for some x ∈ {−N, . . . , N}. Without
loss of generality, let us assume that x is a non-negative integer. Then p

(x)
0x = 2−x, and so by

the simple Markov property

E0(H−N,N ) ≥ E0(H−N,N · 1X1=1,...,Xx=x)
= Ex((H−N,N + x))︸ ︷︷ ︸

=∞

·P0(X1 = 1, . . . , Xx = x)︸ ︷︷ ︸
=2−x

= ∞,

which contradicts the result of (a).

(c) First, we note that by (b), the function f : {−N, . . . , N} → R+, given by

f(x) = Ex(H−N,N ),

is well-defined. Moreover, f is even (i.e. f(x) = f(−x)) due to the symmetry of the SRW,
and it has boundary values f(−N) = f(N) = 0. For x ∈ {−N + 1, . . . , N − 1},

f(x) = Ex(H−N,N ) = Ex(H−N,N · 1X1=x−1) + Ex(H−N,N · 1X1=x+1)
= Ex−1(H−N,N + 1) · Px(X1 = x − 1) + Ex+1(H−N,N + 1) · Px(X1 = x + 1)

= (f(x − 1) + 1) · 1
2 + (f(x + 1) + 1) · 1

2 = f(x − 1) + f(x + 1)
2 + 1

Equivalently, for every x ∈ {−N + 1, . . . , N − 1},

f(x) − f(x − 1) = f(x + 1) − f(x) + 2.
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Let n ≥ 0. Summing over all x ∈ {−n, . . . , n}, it follows that

f(n) − f(−n − 1) =
n∑

x=−n

(f(x) − f(x − 1))

=
n∑

x=−n

(f(x + 1) − f(x) + 2) = f(n + 1) − f(−n) + 2(2n + 1).

Thus, since f is even, we obtain

f(n) = f(n + 1) + (2n + 1).

Using f(N) = 0, we inductively obtain

f(n) =
N−1∑
m=n

(2m + 1) = 2 ·

(
N−1∑
m=n

m

)
+ (N − n)

= 2 ·
(

N(N − 1)
2 − n(n − 1

2

)
+ (N − n)

= N2 − n2.

In particular, f(0) = N2, which is what we wanted to show.
Remark: Another strategy would be to show that the function g : {−N, . . . , N} → R+, defined
by

g(x) = f(x) + x2,

is harmonic in the interior of {−N, . . . , N} and satisfies g(−N) = g(N) = N2. Using the
uniqueness of the solution to the Dirichlet problem, i.e. the fact that there is a unique harmonic
function h : {−N, . . . , N} → R+ satisfying the boundary condition h(−N) = h(N) = N2, it
then follows that g(x) = N2 for every x ∈ {−N, . . . , N}. Thus, f(x) = N2 − x2 for every
x ∈ {−N, . . . , N}.
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