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Solution 2.1

(a)

1
2.
3.
4. Py(X1 =z,X0 =y) = 6*(Y) - Pya, which is not equal to p,, in general.
5.

Under the measure P, we have X ~ 6”. Thus, P,(X; =y) = P.(X1 =y).

Thus, the correct answers are 1, 2 and 5.

(b) By definition of the n-step transition probability, we obtain

Py( Xtz =2, Xps1 =4, Xp =) = p%) - Doy - Dy

= E Pzxy * -+ Pxp_1z * Pxy " Pyz-
T,y Tn—1€S

Thus, 3. and 5. are equal.

2. is also equal due to the 1-step and homogeneity property of Markov Chains:

P, (Xont2 = 2, Xopy1 =y, Xop = 2| X, =) =

= Pz(X2n+2 = Z|X2n+1 = y)]Pz(XZn—&-l = y|X2n = z)Pz(XQn = I|Xn = x)
= Pr(Xnt2 = 2[Xnt1 = Y)Pe(Xny1 = y[ X2 = 7)P (X, = 7)

=P.(Xpio =2, Xnt1 =y, X = 7).

On the other hand, we can apply the simple Markov property with & = n, Z = 1 and
f((Xk+m)m20) = ]lxk+2:Zan+1:y to obtain

Pa:(X7L+2 = Z7X7L+1 = Z/|Xn = Ji) = Ew(]]-ngz,Xlzy) = ]P)x(X2 =2z,X1 = y) = Pzy * Pyz-

Thus, 1. and 4. are equivalent to each other but not to P, (X,42 = 2z, X1 =y, X, = 2).

(c) We have:

1. Py(Xy = 3) = p12-pa3 = 1/4.
2. P1(X5 =3) =0, since the SRW is at even values at odd times.

P (X4 =3) = (‘11) -1/16 = 1/4. We used that every nearest-neighbor path on Z from 1 to
3 of length 4 does exactly 3 steps “+1” and 1 step “-1”. Each such path has probability
1/16 and there are (11) ways to choose the position of the step “-1”.

4. P1(X5Xs < 0) = 0. Two consecutive values of the SRW cannot have opposite signs.
5. P1(Xont1 = 0) = (**1)2727~! for n € N. Indeed, we can get to 0 after 2n + 1 steps by

n
summing n + 1 times "—1" and n times "+1". Each particular way of achieving this has

probability 27 n of happening, and in total there are (2";1) ways of choosing when the
"+1" happen.

Thus, the probabilities that are 0 are 2 and 5.
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Solution 2.2 Let us identify the set a,b,c with 1,2,3. Then, from the diagram we can get the
following transition matrix

0 1 0
P=|( 0 1/2 1/2
1/2 0 1/2

We know that P(X,, = a) = pflti = P"(1,1). Then we need to calculate P". We see that this
matrix is diagonalizable since it has different eigenvalues. Indeed, it characteristic equation is given
by

OzdaMI—P):A<A—;>?—i:iQ—1NM2+U

and its eigenvalues are 1,i/2, —i/2. Hence, there exists an invertible matrix U such that

1 0 0
P=U| 0 i/2 0 vt
0 0 —i/2
and then
1 0 0
P"=U| 0 (i/2)" 0 vt

0 0 (=i/2)"

This implies that P™(1,1) =z 4+ y(i/2)"™ + 2(—i/2)" for some constants z,y, z. We can calculate
the value of these constants by using the first steps of our chain

=P'(L)=z+y+=z
PY(1,1) =z +iy/2 —iz/2
=P?(1,1) =z —y/4 — z/4.
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Solution 2.3 Define p to be the law of Xy and set

P X1 =yl Xp,=2) if In:PX, =2)>0,
Ty — .
1oy otherwise.

By homogeneity, p,, is well-defined. Furthermore, for every zo,...,z, € S, we have

P(XO =20, - - .,Xn = !L‘n) = ]P(Xo = 1‘0) HP(XZ = .Z‘1|X0 = ZQy--- ,Xi,1 = .%'1;1)

i=1

=n(wo) =P(X;=2;|X;—1=%;-1)=Pz; 2,

= ,U'(IO) *Pxozy o Prp_izn

where we used the 1-step Markov property and the definitions of p and P.
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It remains to check that P is a transition probability. Let x € S. If there exists n > 0 such that
P(X, = x) > 0, then

pry = Z P(Xpp1 =yl Xn =2) =1

yeE yeE
Otherwise,
g Doy = g 1,—y =1
yeE yeE

Solution 2.4
Under Py, (X, )n>0 is a simple random walk (SRW) starting at 0. For ¢ € Z and k > 0,

20 10
(Z ]].Xn—i> = k‘Xu] =1| = ]Pz [(Z ]]-Xn_i> = k‘|
n1:()10 n=0
(Z ]an_(]> = k} =Py (Z=k).
n=0

Above, the second equality follows from the simple Markov property (Theorem 1.5 in the lecture
notes with f(xg,z1,...) = ]I{Z;OZO 1,,—i = k}) and the third equality follows since (i + X, )n>0 is
a SRW starting at ¢ (under Pp). Since the right-hand side does not depend on ¢, it directly follows
that

IP() (Z/ = k|X10 = Z) = ]P)()

= ]P)()

Po(Z =k) =) Po(Z =k|X10=1i) -Po(Xi0=1) =Py (Z=k),
1€EZL

and so Z and Z’ have the same distribution. Furthermore, we see that Z’ and X are independent.The
simple Markov property implies that Z and Z’ are conditionally independent given {X;9 = i}.
Therefore, Z and Z' are independent as the following computation shows:

Po(Z =k 2 =€) = Po(Z =k, Z' =l|X19 = i) Po(X10 = 1)

1€EZL
= Po(Z = k|X10 =) - Po(Z' = €| X10 = i) - Po(X10 = 1)
i€Z
=Py(Z' =1)- (Z]P’O(Z = k| X190 =14) - Po(X10 = z’))
iE€EZL

=Po(Z' =0) -Po(Z = k).
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Solution 2.5

(a) We establish the inequality by induction on k. For k = 0, the inequality is trivial. For k > 1,
it follows from the simple Markov property that

PO(H—N7N > kN)

= Z Po(H-nn >k-N, X1 =21,..., X(s—1)N = T(k—1)N)
—N+1§m1,...,m(k,1)N§N—1
= Z Prp oy (H-nN>N) - Po(Xy =21,..., X(p-1)N = T(k-1)N)

—N+1<z1,.... 2,1 )N<N—1

Since the distance from any z € {—N +1,..., N — 1} to either N or —N is at most N, it
follows that P,(H_y n < N) > 27V Thus,
]P)()(H,N’N > k- N)

<@a-27Y). Z Po(X1 =21,..., X(h—1)N = T(k—1)N)
—N+1<z1,..,2(r—1)NSN—-1

=(1-2"Y) Py(H-nn>(k—1)-N) < (1-2"N)k

where we used the induction hypothesis in the last step.

We compute

Eo(H_yn) =Y Po(H.yn >0 <Y N-Py(H.yy >k -N)=N-2".
=0 k=0

(1—2-N)k
(b) Assume towards a contradiction that E,(H_y n) = oo for some € {—N,..., N}. Without

loss of generality, let us assume that x is a non-negative integer. Then p(()i) = 27" and so by
the simple Markov property

Eo(H-nn) > Eo(H-nn-1x,=1,.. X,=2)
=E,(H-nN+2) Po(X1=1,...,X; =12) = 00,

=00 —2—x

which contradicts the result of (a).
(¢) First, we note that by (b), the function f: {—N,..., N} = Ry, given by
f(z) = Eo(H_n ),

is well-defined. Moreover, f is even (i.e. f(z) = f(—=z)) due to the symmetry of the SRW,
and it has boundary values f(—N) = f(N)=0. Forx € {-N +1,...,N — 1},

f@)=Ex(H-nn)=Ez(H-nn - 1x,=o-1) + Eo(H_nn - Ix,=z+1)
= Em—l(H—N,N + 1) -Px(Xl = — 1) + Ex+1(H—N,N + 1) -Px(Xl =+ 1)

:(f($*1)+1)'%+(f(x+1)+1).%:f(x_l)‘;f($+1)

+1

Equivalently, for every x € {—-N +1,...,N — 1},

f@)=fle=1)=flz+1) - flz)+2.
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Let n > 0. Summing over all z € {—n,...,n}, it follows that

n

fn) = f(=n—=1)= Y (f(&) = flz - 1))

=) (fle+1) = f(2)+2) = f(n+1) = f(=n) +2(2n + 1).

Thus, since f is even, we obtain
fln)=fn+1)+(2n+1).
Using f(IN) = 0, we inductively obtain

N-—-1 N-1
fn)=>Y (@m+1)=2 (Zm) + (N —n)

m=n m=n

:2.(N(N2_1) —”(”2_1)+(N—n)

= N2 - p2

In particular, f(0) = N2, which is what we wanted to show.
Remark: Another strategy would be to show that the function g : {—N,..., N} — R, defined
by

g(w) = f(z) +a?,
is harmonic in the interior of {—N, ..., N} and satisfies g(—N) = g(IN) = N2. Using the
uniqueness of the solution to the Dirichlet problem, i.e. the fact that there is a unique harmonic
function h : {—N,..., N} — R, satisfying the boundary condition h(—N) = h(N) = N2, it
then follows that g(x) = N2 for every x € {—N,...,N}. Thus, f(z) = N? — 22 for every
x€{=N,...,N}.
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