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Solution 3.1

(a) 1. False.
2. False.
3. True. We have that:

Px(Hy < ∞, Hy > n | Xn = z) = Px(Hy < ∞, | Xn = z, Hy > n)Px(Hy > n |Xn = z)
= Pz(Hy < ∞)Px(Hy > n |Xn = z)

4. False.
5. False.

It is easy to find counterexamples for 1, 2, 4 and 5.

(b) Consider the following Markov Chain:
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1. False. Using the Markov Chain above: Px(T1 = 2) = 1
2 ̸= 1

4 = Px(T2 = 2)
2. False. Using the Markov Chain above: Px(T2 = 2) = 1

4 ̸= 1
8 = Px(T3 = 2)

3. False. Using the Markov Chain above: Py(T1 = 2) = 1
2 ̸= 1

4 = Py(T2 = 2)
4. False. We do not know which value the Markov Chain takes at T2, even if it was finite.
5. False. Since T1 or T2 could be infinite, the expression XT1+T2 need not be well-defined.

However, the statement is true if both stopping times are finite almost surely.
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(c) Consider the following Markov Chain:
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1. False. Using the Markov Chain above: Px(T2 = T3 = ∞) = 1
2 · 3

4 ̸= 1
2 · 3

4 · 11
16 = Px(T2 =

∞) · Px(T3 = ∞),
2. False. Using the Markov Chain above: Px(T1 = T2 = ∞) = 1

2 ̸= 1
2 · 3

4 = Px(T1 =
∞) · Px(T2 = ∞).

3. False. Using the Markov Chain above: Py(T1 = T2 = ∞) = 1
2 ̸= 1

2 · 3
4 = Py(T1 =

∞)Py(T2 = ∞)
4. True. We have that

Px(T8 = ∞ | T7 < ∞) =
∞∑

k=0
Px(T8 = ∞ | T7 = k)Px(T7 = k | T7 < ∞)

=
∞∑

k=0
Px(T8 = ∞ | T7 = k, XT1+...+T7 = y)Px(T7 = k | T7 < ∞)

=
∞∑

k=0
Py(Hy = ∞)Px(T7 = k | T7 < ∞) = Py(Hy = ∞)

Above we have used the Strong Markov Property with f = 1T8=∞.

5. False. Using the Markov Chain above: Px(T8 = ∞ | T7 < ∞) = 1
2 ̸= 1 = Px(Hx = ∞).

Note: Questions (b) 2, 3 and 5, and (c) 1, 2, 3 are true assuming that the inter-visit times
are finite almost surely.

Solution 3.2

(a) By the definition of conditional expectation, we have to check that for all A ∈ Fk:

Eµ

[
f

(
(Xk+n)n≥0

)
1A

]
= Eµ [g(Xk)1A]

We have:

Eµ

[
f

(
(Xk+n)n≥0

)
1A

]
=

∑
x∈S

Eµ

[
f

(
(Xk+n)n≥0

)
1A|Xk = x

]
Pµ(Xk = x)

=
∑
x∈S

Ex

[
f

(
(Xn)n≥0

)]
Eµ [1A|Xk = x] Pµ(Xk = x)

=
∑
x∈S

Eµ [g(x)1A|Xk = x] Pµ(Xk = x) = Eµ [g(Xk)1A]

In the second equality we have used the Simple Markov Property, and in the third equality
we have used the fact that g(x) is a constant and thus we can move it inside the expectation.
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(b) The solution is identical to (a) by changing k by T and applying the Strong Markov Property,
thanks to T being finite almost surely.

Solution 3.3

(a) From the problem setup, we have that:

h(0) = P0(H̃k < H̃0) = 0

h(k) = Pk(H̃k < H̃0) = 1

For x ∈ {1, . . . , k − 1}, using the first-step analysis,

h(x) = Px(H̃k < H̃0) =
∑

y:|x−y|=1

Px(H̃k < H̃0 | X1 = y)Px(X1 = y).

From the transition probability we know that Px(X1 = y) = 1
2 . Thus,

h(x) = 1
2h(x − 1) + 1

2h(x + 1).

(b) Rewriting the recurrence equation, we notice that

h(x) − h(x − 1) = h(x + 1) − h(x).

Thus, the difference between consecutive terms is constantly d, and so h(x) = dX + h(0).
Using the boundary conditions we get that d = 1

N , and thus h(x) = x
N .

Alternatively, we could find that the general solution to the recurrence h(x) = 2h(x)−h(x−1)
is of the form A + Bx, since its characteristic equation r2 − 2r + 1 has a double root at r = 1.
Solving for A and B yields the same result.

Solution 3.4 Let x ∈ C. We have Px[τC > kN ] = Px[0 > kN ] = 0, and so the inequality holds
true for all k ≥ 0.

Let x ∈ S \ C. The inequality is trivial for k = 0. For k ≥ 1, we prove it by induction over k.
For k = 1, we have

Px[τC > N ] ≤ Px[τC > n(x)] = 1 − Px[τC ≤ n(x)] = 1 − Px[Xn(x) ∈ C] ≤ 1 − ε. (1)

For k ≥ 2, it follows from the Markov property that

Px[τC > kN ] =
∑

y1,...,y(k−1)N ∈S\C

Px[τC > kN, X1 = y1, . . . , X(k−1)N = y(k−1)N ]

=
∑

y1,...,y(k−1)N ∈S\C

Py(k−1)N
[τC > N ] · P[X1 = y1, . . . , X(k−1)N = y(k−1)N ].

By (1), we have Py(k−1)N
[τC > N ] ≤ 1 − ε for all y(k−1)N ∈ S, and so

Px[τC > kN ] ≤ (1 − ε) ·
∑

y1,...,y(k−1)N ∈S\C

Px[X1 = y1, . . . , X(k−1)N = y(k−1)N ]

= (1 − ε) · Px[τC > (k − 1)N ]
≤ (1 − ε)k,
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where we used the induction hypothesis Px[τC > (k − 1)N ] ≤ (1 − ε)k−1 in the last equation.

Solution 3.5

(a) We have

P0

[(
max

0≤m≤n
Xm

)
≥ a

]
= P0 [Ha ≤ n] = P0 [Xn > a] + P0 [Ha ≤ n, Xn < a] ,

where we use that a ≥ 1 is odd and n ≥ 0 is even to ensure that Xn ̸= a P0-a.s.

(b) Idea: The law of (XHa+k)k≥0 is the same as the law of (a − XHa+k)k≥0, i.e. after hitting a at
time Ha, we can reflect the trajectory of the SRW since steps +1 and −1 both occur with
probability 1/2.
More precisely, we have

P0 [Ha ≤ n, Xn < a] =
n∑

m=0
P0[Xn < a, Ha = m]. (2)

By the strong Markov property,

P0[Xn < a, Ha = m] = P0[Xn < a, Ha = m, Ha < ∞]
= P0[XHa+n−m < a, Ha = m|Ha < ∞, XHa = a]︸ ︷︷ ︸

=Pa[Xn−m<a]·P0[Ha=m|Ha<∞,XHa =a]

·P0[Ha < ∞]

= Pa[Xn−m < a] · P0[Ha = m].

Since Pa[Xn−m > a] = Pa[Xn−m < a] by symmetry, we deduce that

P0[Xn < a, Ha = m] = Pa[Xn−m < a] · P0[Ha = m]
= Pa[Xn−m > a] · P0[Ha = m] = P0[Xn > a, Ha = m],

where we again used the strong Markov property in the last equality. Combined with (2), we
conclude that

P0 [Ha ≤ n, Xn < a] =
n∑

m=0
P0[Xn < a, Ha = m]

=
n∑

m=0
P0[Xn > a, Ha = m] = P0[Xn > a, Ha ≤ n] = P0[Xn > a].

Finally, we deduce that

P0

[(
max

0≤m≤n
Xm

)
≥ a

]
= P0 [Xn > a] + P0 [Ha ≤ n, Xn < a]

= 2P0 [Xn > a] = P0 [Xn > a] + P0 [Xn < −a]
= P0[|Xn| > a].

Solution 3.6

(a) Let us denote by (Xn)n≥0 the Markov chain with transition probability corresponding to
the rules of the game. Recall that Hi = inf{n ≥ 0; Xn = i}. Let us call ki = Ei[H9] for
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i ∈ {1, . . . , 9}. We observe that 9 is an absorbing state and that k9 = 0. Then we can express
H9 as

H9 = f((Xn)n≥0) =
∞∑

n=0
1{Xn<9}

where f is a measurable function. Then, for i ∈ {1, . . . , 8} we have Pi-a.s. that

ki =
9∑

j=1
Ei[H9|X1 = j]Pi[X1 = j]

=
9∑

j=1
Ei[1{X0<9} + f((Xn+1)n≥0)|X1 = j]pi,j

(1)=
9∑

j=1
(1 + Ej [f((Xn)n≥0)]) pi,j

=
9∑

j=1
(1 + kj)pi,j

where the equality (1) is justified by the Markov property. Applying this to the model, and
considering the effect of the ladders and snakes we get to the following system of equations

k1 = 1
2(1 + k7) + 1

2(1 + k5)

k4 = 1
2(1 + k5) + 1

2(1 + k1)

k5 = 1
2(1 + k1) + 1

2(1 + k7)

k7 = 1
2(1 + k4) + 1

2(1 + k9)

Since k9 = 0 we can solve this system. We obtain that the average number of turns it takes
to complete the game is given by k1 = 7.

(b) Notice that the probability that a player starting from the middle square will complete the
game without slipping to the square 1 is exactly P5[H9 < H1]. Using the Markov property
repeatedly we get

P5[H9 < H1] = p5,6 P1[H9 < H1]︸ ︷︷ ︸
=0

+p5,7P7[H9 < H1]

= 1
2(p7,8P4[H9 < H1] + p7,9 P9[H9 < H1]︸ ︷︷ ︸

=1

)

= 1
2

1
2(p4,5P5[H9 < H1] + p4,6 P1[H9 < H1]︸ ︷︷ ︸

=0

) + 1
2


= 1

8P5[H9 < H1] + 1
4

Then P5[H9 < H1] = 2/7.
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