Applied Stochastic Processes

Solution sheet 4

Solution 4.1

- (a) 1. False. For the chain on $S = \{a, b\}$ with $p_x y = \delta_y^b$, we have that $H_x = \infty$ and $\widetilde{H}_x = 0$ \mathbf{P}_x -a.s.
 - 2. False. For x = y, we note that $\widetilde{H}_x = 0 \mathbf{P}_y$ -a.s. since $X_0 = y = x$. Thus, $\mathbf{P}_y[\widetilde{H}_x < \infty] = 1$, but we cannot say anything about $\mathbf{P}_y[H_x < \infty]$.
 - 3. True. For $x \neq y$, we note that $\widetilde{H_x} \geq 1 \mathbf{P}_y$ -a.s. since $X_0 = y \neq x$. Thus, $\widetilde{H_x} = H_x \mathbf{P}_y$ -a.s. and in particular,

$$\mathbf{P}_y[H_x < \infty] = \mathbf{P}_y[H_x < \infty].$$

4. True. We note that $X_0 x \mathbf{P}_x$ -a.s. and thus,

$$\mathbf{E}_x[\widetilde{V_x}] = 1 + \mathbf{E}_x[V_x].$$

- 5. True. Under \mathbf{P}_y , $\mathbb{1}_{X_0=x} = 0$ a.s.
- (b) 1. True. The statement follows from the strong Markov property. More precisely, we will apply the strong Markov property for the stopping time $T = H_x$, the \mathcal{F}_T -measurable and bounded random variable Z = 1, and the measurable and bounded function $f_N : S^{\mathbb{N}} \to \mathbb{R}$ defined by

$$f_N(x_0, x_1, x_2, \ldots) = \left(\sum_{n=0}^{\infty} \mathbf{1}_{x_n=x}\right) \wedge N,$$

where we needed to introduce the truncation at N to ensure that f_N is bounded. Since $X_{H_x} = x$ and $H_x = \infty \implies V_x = 0$ \mathbf{P}_y -almost-surely, we obtain

$$\begin{aligned} \mathbf{E}_{y}[V_{x} \wedge N] &= \mathbf{E}_{y}\left[(V_{x} \wedge N) \cdot \mathbf{1}_{H_{x} < \infty}\right] \\ &= \mathbf{E}_{y}\left[V_{x} \wedge N | H_{x} < \infty, X_{H_{x}} = x\right] \cdot \mathbf{P}_{y}\left[H_{x} < \infty\right]. \end{aligned}$$

Moreover,

$$\begin{split} \mathbf{E}_{y}\left[V_{x} \wedge N | H_{x} < \infty, X_{H_{x}} = x\right] &= \mathbf{E}_{y}\left[\left(\sum_{k \geq H_{x}} \mathbf{1}_{X_{k} = x}\right) \wedge N | H_{x} < \infty, X_{H_{x}} = x\right] \\ &= \mathbf{E}_{y}\left[f_{N}\left((X_{H_{x}+n})_{n \geq 0}\right) | H_{x} < \infty, X_{H_{x}} = x\right] \\ &= \mathbf{E}_{x}\left[f_{N}\left((X_{n})_{n \geq 0}\right)\right] \\ &= \mathbf{E}_{x}\left[\widetilde{V_{x}} \wedge N\right], \end{split}$$

where we used the strong Markov property in the third equality. Taking the limit as $N \to \infty$, we conclude by monotone convergence that

$$\mathbf{E}_{y}[V_{x}] = \lim_{N \to \infty} \mathbf{E}_{y}[V_{x} \wedge N] = \lim_{N \to \infty} \mathbf{E}_{x} \left[\widetilde{V_{x}} \wedge N \right] \cdot \mathbf{P}_{y} \left[H_{x} < \infty \right]$$
$$= E_{x} \left[\widetilde{V_{x}} \right] \cdot \mathbf{P}_{y} \left[H_{x} < \infty \right] = \left(1 + \mathbf{E}_{x}[V_{x}] \right) \cdot \mathbf{P}_{y} \left[H_{x} < \infty \right],$$

2. False. For a Markov Chain that is constant at $x = y V_x^{(n)} + 1 = V_x^{(n+1)}$.

1 / 4

- 3. True. This follows from the Monotone Convergence Theorem.
- 4. False. This would imply $\mathbf{E}_x[V_x] = \infty$ but $\mathbf{P}_x[V_x = \infty] < 1$, which contradicts the Dichotomy Theorem.
- 5. True. For x recurrent, we have $\mathbf{P}_x[V_x = \infty] = 1$, so in order to have $\mathbf{P}_x[V_x = 2] > 0$, we need x to be transient. By the Lecture Notes,

$$\mathbf{P}_{x}[V_{x}=2] = \mathbf{P}_{x}[V_{x}\geq 2] - \mathbf{P}_{x}[V_{x}\geq 3] = \rho_{x}^{2} - \rho_{x}^{3}.$$

It is easy to verify that the function $f(\rho) = \rho^2 - \rho^3$ achieves its maximum on [0,1] at $\rho = 2/3$ with f(2/3) = 4/27. Consequently, it is possible to construct Markov chains with $\mathbf{P}_x[V_x = 2] = \rho$ if and only if $\rho \in [0, 4/27]$.

Concrete example for $\rho = 1/8$: We can consider the two-state Markov chain with state space $S = \{x, y\}$ and transition probability given by $p_{xx} = p_{xy} = 1/2$ and $p_{yy} = 1$. Then $\mathbf{P}_x[V_x = 2] = \mathbf{P}_x[X_1 = x, X_2 = x, X_3 = y] = p_{xx} \cdot p_{xx} \cdot p_{xy} = 1/8$.

Solution 4.2

(a) We prove recurrence of the state 0, but the same proof applies to all $x \in \mathbb{Z}$ (due to translation invariance of the transition probability of the SRW). We showed previously that for the SRW on \mathbb{Z} , i.e. the case of $\alpha = 1/2$ in the context of this exercise, we have for every $x \in \mathbb{Z}$ and for every $n \geq 0$,

$$p_{0x}^{(2n)} \le p_{00}^{(2n)}$$

Noting that $p_{0x}^{(2n)} = 0$ if |x| > 2n, we have

$$1 = \sum_{x \in \mathbb{Z}} p_{0x}^{(2n)} \le (4n+1) \cdot p_{00}^{(2n)},$$

which implies $p_{00}^{(2n)} \ge \frac{1}{4n+1}$ and thereby,

$$\mathbf{E}_0[V_0] = \sum_{n \ge 0} p_{00}^{(n)} = \infty$$

The Dichotomy Theorem now implies that 0 is recurrent.

(b) Again, we only prove transience of the state 0. Moreover, it suffices to consider $\alpha > 1/2$ by symmetry (since -X is a biased random walk on \mathbb{Z} with parameter $1 - \alpha < 1/2$ and 0 is transient for X if and only if it is transient for -X).

First, we note that the Markov chain $X = (X_n)_{n\geq 0}$ under \mathbf{P}_0 has the same law as $X' = (X'_n)_{n\geq 0}$, defined as the partial sums $X'_0 = 0$ and $X'_n = \sum_{i=1}^n \xi_i$ of a collection $(\xi_i)_{i\geq 1}$ of i.i.d. random variables taking the values +1 (resp. -1) with probability α (resp. $1 - \alpha$). Therefore, by the strong law of large numbers,

$$\lim_{n \to \infty} \frac{X_n}{n} = \mathbf{E}_0[X_1] = 2\alpha - 1 > 0 \quad \mathbf{P}_0\text{-a.s.}.$$

Hence, for any $\epsilon \in (0, 2\alpha - 1)$,

$$\lim_{N \to \infty} \mathbf{P}_0[\bigcap_{n \ge N} \{X_n \ge \epsilon n\}] = \mathbf{P}_0[\bigcup_{N \ge 0} \bigcap_{n \ge N} \{X_n \ge \epsilon n\}] = 1,$$

and in particular, there exists $N \ge \epsilon^{-1}$ such that

$$1/2 \le \mathbf{P}_0[\bigcap_{n \ge N} \{X_n \ge \epsilon n\}] \le \mathbf{P}_0[\bigcap_{n \ge N} \{X_n \ge 1\}] \le \mathbf{P}_0[\sum_{n \ge 1} \mathbf{1}_{X_n = 0} < N] \le \mathbf{P}_0[V_0 < \infty].$$

By the Dichotomy Theorem, 0 is transient.

For parts (c)-(e), we construct an explicit coupling of reflected random walks and biased random walks for all values of $\alpha \in [0, 1]$. On a general probability space $(\Omega, \mathcal{A}, \mathbf{P})$, let $(U_n)_{n \geq 1}$ be a sequence of i.i.d. uniform random variables taking values in [0, 1]. For every $\alpha \in [0, 1]$, we define the following stochastic processes:

(i) $(X_0^{(\alpha)})_{n\geq 0}$ is defined by $X_0^{(\alpha)} = 0$ and for $n\geq 1$ by

$$X_n^{(\alpha)} = X_{n-1}^{(\alpha)} + \mathbb{1}_{U_n \le \alpha} - \mathbb{1}_{U_n > \alpha}.$$

We note that $(X_0^{(\alpha)})_{n\geq 0}$ is a biased random walk on \mathbb{Z} started at 0, i.e. it is a $MC(\delta^0, p)$ with the transition probability given on the exercise sheet.

(ii) $(Y_0^{(\alpha)})_{n\geq 0}$ is defined by $Y_0^{(\alpha)}=0$ and for $n\geq 1$ by

$$Y_n^{(\alpha)} = \begin{cases} Y_{n-1}^{(\alpha)} + \mathbb{1}_{U_n \le \alpha} - \mathbb{1}_{U_n > \alpha} & \text{if } Y_{n-1}^{(\alpha)} > 0, \\ Y_{n-1}^{(\alpha)} + 1 & \text{if } Y_{n-1}^{(\alpha)} = 0. \end{cases}$$

We note that $(Y_0^{(\alpha)})_{n\geq 0}$ is a reflected random walk on \mathbb{N} started at 0, i.e. it is a $MC(\delta^0, p)$ with the transition probability given on the exercise sheet.

We define

$$H_0^{(\alpha,X)} := \inf\{n \ge 1 : X_n^{(\alpha)} = 0\}$$
 and $H_0^{(\alpha,Y)} := \inf\{n \ge 1 : Y_n^{(\alpha)} = 0\},$

and use analogous notation for -X and |X|.

(c) Our goal is to show that $\mathbf{P}[H_0^{(\alpha,Y)} < \infty] = 1$ for $\alpha \le 1/2$. We will use a comparison to a SRW ($\alpha = 1/2$). More precisely, we first note that for $\alpha \le 1/2$,

$$H_0^{(\alpha,Y)} \le H_0^{(1/2,Y)} \quad \mathbb{P}\text{-a.s.},$$

which follows from the definition of $Y^{(\alpha)}$. Moreover, $Y^{(1/2)}$ and $|X^{(1/2)}|$ have the same law. Thus, we conclude that

$$\mathbf{P}[H_0^{(\alpha,Y)} < \infty] \ge \mathbf{P}[H_0^{(1/2,Y)} < \infty] = \mathbf{P}[H_0^{(1/2,|X|)} < \infty] = \mathbf{P}[H_0^{(1/2,X)} < \infty] = 1,$$

where we used Exercise 3.2 (a) in the last equality.

(d) Our goal is to show that $\mathbb{E}[H_0^{(\alpha,Y)}] < \infty$ for $\alpha < 1/2$. We note that conditional on $\{X^{(\alpha)} = 1\}$, the processes $Y^{(\alpha)}$ and $X^{(\alpha)}$ take the same steps up to hitting 0 for the first time. Hence,

$$\mathbb{E}[H_0^{(\alpha,Y)}] = \mathbb{E}[H_0^{(\alpha,X)} | X_1^{(\alpha)} = 1] = \sum_{k \ge 1} \mathbf{P}[H_0^{(\alpha,X)} \ge k | X_1^{(\alpha)} = 1]$$
$$\leq \sum_{k \ge 1} \mathbf{P}[X_k^{(\alpha)} \ge 1 | X_1^{(\alpha)} = 1] = \sum_{k \ge 1} \mathbf{P}[\sum_{i=2}^k \xi_i \ge 0],$$

where we set $\xi_i := \mathbb{1}_{U_i \leq \alpha} - \mathbb{1}_{U_i > \alpha}$ to be the steps of $X^{(\alpha)}$. By the law of large numbers, we already know that $\frac{1}{k-1} \sum_{i=2}^{k} \xi_i$ will be close to $\mathbb{E}[\xi_i] = 2\alpha - 1 < 0$ as $k \to \infty$. Quantitative upper bounds on $\mathbf{P}[\sum_{i=2}^{k} \xi_i \geq 0]$ follow from standard large deviation theory (see, e.g. Cramér's theorem). The proof is actually short, and so we include it here. For $\lambda \geq 0$, we obtain

$$\mathbf{P}[\sum_{i=2}^{k} \xi_i \ge 0] = \mathbf{P}[\exp(\lambda \sum_{i=2}^{k} \xi_i) \ge 1] \le \mathbb{E}[\exp(\lambda \sum_{i=2}^{k} \xi_i)] = \prod_{i=2}^{k} \mathbb{E}[\exp(\lambda \xi_i)]$$
$$= \left(e^{\lambda} \cdot \alpha + e^{-\lambda} \cdot (1-\alpha)\right)^{(k-1)},$$

where we used Markov's inequality and the independence of the $(\xi_i)_{i\geq 2}$. Minimizing $e^{\lambda} \cdot \alpha + e^{-\lambda} \cdot (1-\alpha)$ over $\lambda \in [0,\infty)$, we obtain that the minimum is attained at $\lambda = \ln(\sqrt{\frac{1-\alpha}{\alpha}}) > 0$ (since $\alpha < 1/2$). Hence,

$$\mathbf{P}[\sum_{i=2}^{k} \xi_i \ge 0] \le \left(2\sqrt{\alpha(1-\alpha)}\right)^{(k-1)},$$

and so

$$\mathbb{E}[H_0^{(\alpha,Y)}] \le \sum_{k\ge 1} \left(2\sqrt{\alpha(1-\alpha)}\right)^{(k-1)} = \frac{1}{1-2\sqrt{\alpha(1-\alpha)}} < \infty \quad \text{since } \alpha < 1/2.$$

(e) We first note that

$$\mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1] = \mathbf{P}[H_0^{(1-\alpha,X)} < \infty | X_1 = -1] \ge \mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1],$$

where we used $\alpha \ge 1/2$ in the inequality. Second, by Exercise 3.2 (b), we know that 0 is transient for the biased random walk with $\alpha > 1/2$, i.e. we obtain

$$1 > \mathbf{P}[H_0^{(\alpha,X)} < \infty] = \alpha \cdot \mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1] + (1 - \alpha) \cdot \underbrace{\mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = -1]}_{\ge \mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1]}$$

$$\geq \mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1]$$

By the definition of the processes $Y^{(\alpha)}$ and $X^{(\alpha)}$, we conclude that

$$\mathbf{P}[H_0^{(\alpha,Y)} < \infty] = \mathbf{P}[H_0^{(\alpha,Y)} < \infty | Y_1 = 1] = \mathbf{P}[H_0^{(\alpha,X)} < \infty | X_1 = 1] < 1.$$

Hence, 0 is transient for the reflected random walk with $\alpha > 1/2$.

Solution 4.3

Let $x \in V$. We observe that under \mathbf{P}_x , the process $Y = (Y_n)_{n \geq 1}$, defined by

$$Y_n := d(X_n, x),$$

is a reflected random walk on \mathbb{N} starting at 0 with parameter

$$\alpha := \frac{d-1}{d} \ge 2/3,$$

i.e. a Markov chain $MC(\delta^0, P')$ with transition probability given by $p'_{0,1} = 1$, $p'_{y,y+1} = \frac{d-1}{d}$, and $p'_{y,y-1} = \frac{1}{d}$ for $y \ge 1$. It now follows from Exercise 3.2 (e) that the state 0 is transient for Y. Clearly, the Markov chain X is in state x if and only if the Markov chain Y is in state 0. Therefore, the state x is transient for X.

Solution 4.4

(a) We have

$$\begin{split} \mathbf{P}_{(0,0)}[H_{(0,0)} < \infty] &= \sum_{y \in \mathbb{Z}^2, \mu(y) \neq 0} \mathbf{P}_{(0,0)}[H_{(0,0)} < \infty \mid X_1 = y] \mu(y) \\ &= \sum_{y \in \mathbb{Z}^2} \mu(y) = 1. \end{split}$$

Thus, (0,0) is recurrent regardless of the choice of measure μ .

4 / 4

(b) The number of steps required for X to arrive at $y = (y_1, y_2)$ and then return to 0 is $||y||_1 + 1$. It follows that

$$\mathbf{E}_{(0,0)}[H_{(0,0)}] = \sum_{n \ge 1} n \mathbf{P}_{(0,0)}(H_{(0,0)} = n) = \sum_{n \ge 1} n \mathbf{P}_{(0,0)} \Big(\{y : ||y||_1 = n - 1\} \Big)$$
$$= \sum_{y = (y_1, y_2) \in \mathbb{Z}^2} (||y||_1 + 1) \mu(y).$$

Hence, (0,0) is positive recurrent if $\sum_{y=(y_1,y_2)\in\mathbb{Z}^2}(||y||_1+1)\mu(y) < \infty$ and null recurrent if $\sum_{y=(y_1,y_2)\in\mathbb{Z}^2}(||y||_1+1)\mu(y) = \infty$.

- (c) 1. Not a Markov chain in general. Denote $Y_n := ||X_n||_{\infty}$. Take $\mu(x) = \frac{1}{9}\mathbb{1}_{||x||_{\infty} \le 1}$. Then $\mathbf{P}(Y_3 = 0 \mid Y_2 = 1, Y_1 = 1) = 1$ but $\mathbf{P}(Y_3 = 0 \mid Y_2 = 1) < 1$.
 - 2. This is a Markov Chain in general. Here $S = \mathbb{N}$ and

$$p_{m,n} = \begin{cases} \sum_{x \in \mathbb{Z}^2 : \|x\|_1 = n} \mu(x) & \text{if } m = 0, \\ 1 & \text{if } m > 0 \text{ and } n = m + 1, \\ 0 & \text{otherwise.} \end{cases}$$

3. Not a Markov chain in general. Denote $Z_n := \prod_x (X_n)$. Take $\mu(x) = \frac{1}{9} \mathbb{1}_{||x||_{\infty} \le 1}$. Then $\mathbf{P}(Z_3 = 0 \mid Z_2 = 1, Z_1 = 1) = 1$ but $\mathbf{P}(Z_3 = 0 \mid Z_2 = 1) < 1$.