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Solution 4.1

(a) 1. False. For the chain on S = {a,b} with p,y = 6%, we have that H, = oo and H, =0
P,-a.s.

2. False. For x = y, we note that H,=0 P-a.s. since Xg =y = x. Thus, Py[]?m <o) =1,
but we cannot say anything about P,[H, < cc].

3. True. For = # y, we note that }Tw > 1 Py-a.s. since Xg =y # «. Thus, I?x =H,; P,as.
and in particular, .
P,[H, < o0] = Py[H, < 0.

4. True. We note that Xgz P, -a.s. and thus,
E,[V,] =1+ E,[V,].
5. True. Under Py, 1x,—, =0 a.s.

(b) 1. True. The statement follows from the strong Markov property. More precisely, we will
apply the strong Markov property for the stopping time 7' = H,, the Fp-measurable and
bounded random variable Z = 1, and the measurable and bounded function fy : SN — R

defined by
In(@o,z1,22,...) = (Z 1%—90) AN,
n=0

where we needed to introduce the truncation at N to ensure that fxn is bounded. Since
Xg, =z and H, = oo = V,; = 0 Py-almost-surely, we obtain

E, Vo AN =E, [V AN) -1, <o)
=E, [V, AN|H, < 00, Xp, =z]-Py[Hy < ].

Moreover,

E, [V, ANN|H, < 00, Xp, = ]

E, Z 1x,—2 | AN|H, <00, Xy, =z
k>H,

Ey [fv (X#,+n)n>0) [Hy < 00, Xy, = 7]
E, [fN ((Xn)nZO)]
—E, F/; A N} ,

where we used the strong Markov property in the third equality. Taking the limit as
N — oo, we conclude by monotone convergence that

E,[V] = lim E,[V; AN]= Jim B, [f/} A N} P, [H, < ]

=1
N—o0
= B, [Vi] P, [H, < o] = (1 + B,[Vi]) - P, [H, < o]
2. False. For a Markov Chain that is constant at z =y Vg;(n) +1= VI("'H).
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3. True. This follows from the Monotone Convergence Theorem.
4. False. This would imply E.[V,] = oo but P.[V, = oo] < 1, which contradicts the
Dichotomy Theorem.

5. True. For x recurrent, we have P,[V, = oo] =1, so in order to have P,[V, = 2] > 0, we
need z to be transient. By the Lecture Notes,

P.[V, =2 =P,[V, >2]| - P,[V, >3] =p2 — p>.

It is easy to verify that the function f(p) = p? — p® achieves its maximum on [0,1] at
p = 2/3 with f(2/3) = 4/27. Consequently, it is possible to construct Markov chains
with P,[V,; = 2] = p if and only if p € [0,4/27].

Concrete example for p = 1/8: We can consider the two-state Markov chain with state
space S = {z,y} and transition probability given by pys = pgy = 1/2 and pyy = 1. Then

Solution 4.2

(a)

We prove recurrence of the state 0, but the same proof applies to all € Z (due to translation
invariance of the transition probability of the SRW). We showed previously that for the SRW
on Z, i.e. the case of @ = 1/2 in the context of this exercise, we have for every x € Z and for
every n > 0,

P < pa?.

Noting that p(()in) =0 if |z| > 2n, we have

1=>"p6" < (n+1)-p5",
TEL

which implies pé%”) 2 4n1+1

and thereby,

Eo[Vo] = Zpég) = 00.

n>0
The Dichotomy Theorem now implies that 0 is recurrent.

Again, we only prove transience of the state 0. Moreover, it suffices to consider « > 1/2 by
symmetry (since —X is a biased random walk on Z with parameter 1 — « < 1/2 and 0 is
transient for X if and only if it is transient for —X).

First, we note that the Markov chain X = (X,,),>0 under Py has the same law as X' =
(X])n>0, defined as the partial sums X =0 and X, = > | & of a collection (§;);>1 of i.i.d.
random variables taking the values +1 (resp. —1) with probability « (resp. 1 — ). Therefore,
by the strong law of large numbers,

X,
lim — = E()[Xl] =2a—1>0 Pyp-as.

n—o0 N

Hence, for any € € (0,2a — 1),

lim Po[ () {Xn=en}] =Po[|J [ {Xn=en}] =1,

N—o0
n>N N>0n>N

and in particular, there exists N > e~! such that

1/2 <Po[ () {Xn = en}] < Po[ [ {Xn =1} < Pg[> _ 1x,-0 < N] < Pg[Vj < .

By the Dichotomy Theorem, 0 is transient.
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For parts (c)-(e), we construct an explicit coupling of reflected random walks and biased random
walks for all values of a € [0,1]. On a general probability space (22, A, P), let (U,)n>1 be a sequence
of i.i.d. uniform random variables taking values in [0, 1]. For every « € [0, 1], we define the following
stochastic processes:

(i) (X{)50 is defined by X{* =0 and for n > 1 by
XT(la) = X,r(fi)l +1lv,<a — 1u,>a-

We note that (Xéa))nzg is a biased random walk on Z started at 0, i.e. it is a MC(6°,p) with
the transition probability given on the exercise sheet.

(i) (Y "),z is defined by Y * =0 and for n > 1 by
y(@) — Y 4 1y, <a — Lu,sa YY) >0,
Vi +1 if Y =o.

We note that (Yo(a))nzo is a reflected random walk on N started at 0, i.e. it is a MC(8%,p)
with the transition probability given on the exercise sheet.

We define
H(ax) —inf{n >1: X =0} and H( V)= inf{n >1:Y® =0},
and use analogous notation for —X and | X].

(¢) Our goal is to show that P[Héa’y) < oo] =1 for @ < 1/2. We will use a comparison to a
SRW (a = 1/2). More precisely, we first note that for o < 1/2,

=Y < YY) P,

which follows from the definition of Y(®). Moreover, Y1/2) and | X(1/2)| have the same law.
Thus, we conclude that

P[H*Y) < o] > P[H/*Y) < o0] = PIHM*PD < o] = PIHM?Y) < o] = 1,
where we used Exercise 3.2 (a) in the last equality.

(d) Our goal is to show that E[Héa’y)] < oo for a < 1/2. We note that conditional on {X () =1},
the processes Y (@) and X(® take the same steps up to hitting 0 for the first time. Hence,

E[H) =E[H )X = 1] = Y PH™Y > kX" = 1]
k>1
k
<N P > 1x(M =1=3"P> ¢ >0,
k>1 E>1 i=2

where we set §; := 1y, <o — lu,>q to be the steps of X (@) By the law of large numbers, we
already know that ﬁ f:2 & will be close to E[§;] = 2a — 1 < 0 as k — oo. Quantitative
upper bounds on P[Zf=2 & > 0] follow from standard large deviation theory (see, e.g.

Cramér’s theorem). The proof is actually short, and so we include it here. For A > 0, we
obtain

k k k k
P[Z & > 0] = Plexp(\ Z &) > 1] < Elexp(A Z &) = HE[exp(Asi)}

=(era+e ™ (1- a))(kfl) ,
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where we used Markov’s inequality and the independence of the (¢;);>2. Minimizing e - o +
e - (1 —a) over A € [0,00), we obtain that the minimum is attained at A = In(y/1=%) > 0
(since o < 1/2). Hence,

u (k—1)
P[Z & >0/ < (2 a(l — a)) ,
i=2
and so

o (k=1) 1
E[H Y)<Z(2 1—a> - - < sincea<l1/2.
=1 1-2ya(l—-a)

(e) We first note that

P[H™Y) < 0o|X; = 1] = P[HI ™) < 00| Xy = —1] > P[H*) < 00| X, = 1],

where we used a > 1/2 in the inequality. Second, by Exercise 3.2 (b), we know that 0 is
transient for the biased random walk with o > 1/2, i.e. we obtain

1>PH™Y <o) =a-PH* < co|X; =1]+ (1 —a) - P[HS) < 00| Xy = —1]

>P[H{*) <oo| X1 =1]
(e, X) o
By the definition of the processes Y(® and X (@), we conclude that
P[H*Y) < oo] = P[H™Y) < 0oV} = 1] = P[H{*) < 00| X, = 1] < 1.

Hence, 0 is transient for the reflected random walk with o > 1/2.

Solution 4.3
Let € V. We observe that under P, the process Y = (Y,,)n>1, defined by

an = d(X’m l‘),

is a reflected random walk on N starting at 0 with parameter

d—1
= —2>2
« T2 /3,

and

i.e. a Markov chain MC(4°, P’) with transition probability given by pj; = 1, Pyy+1 = d%dl,
/

Pyy—1 = % for y > 1. It now follows from Exercise 3.2 (e) that the state 0 is transient for Y.

Clearly, the Markov chain X is in state z if and only if the Markov chain Y is in state 0. Therefore,
the state z is transient for X.

Solution 4.4
(a) We have

PoolHoo <l= > PuolHoo <o | X1 =yluy)
YEZ?,u(y)#0

= uly)=1.

y€eZ?

Thus, (0,0) is recurrent regardless of the choice of measure p.
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(b) The number of steps required for X to arrive at y = (y1,y=2) and then return to 0 is ||y||1 + 1.
It follows that

E)[Ho.0) = Y- P00 (Hoo =1) = > nPoo ({v: sl =n - 1})

n>1 n>1

= > (llylh +Dpy).

y=(y1,y2)€Z?

Hence, (0, 0) is positive recurrent if Zy:(yl,yz)ez2(||y||1 + 1)u(y) < oo and null recurrent if
2y ez (Yl + Dply) = oo

(c) 1. Not a Markov chain in general. Denote Y, := || X,||oc. Take pu(z) = £1}14..<1. Then
P(Y3:O|Y2:1,Y1:1):1butP(Y3:O|Y2:1)<1
2. This is a Markov Chain in general. Here S = N and

Z£622:H.’EH1:H [L(x) lf m = 0,
Pman =11 ifm>0andn=m+1,
0 otherwise.

3. Not a Markov chain in general. Denote Z,, := II,(X,). Take u(z) = $1j3)j<1- Then
P(Zgz()\Z2:1,21:1):1butP(23:0|Z2:1)<1
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