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Solution 5.1

(a) 1. False. There are three communicating classes.
2. False. The state c is transient since d can be reached from c but c cannot be reached

from d. Since the communicating class of b is {b, c}, the communicating class theorem
implies that b is also transient.

3. True. By the previous argument we can see that the classes {a} and {b, c} are transient.
Since the state space is finite, a result from the course gives that there exists at least
one recurrent state, and so the class {d, e} must be recurrent.

4. False. By definition, an irreducible Markov chain has exactly one communication class.
5. True. For example, take S to be countably infinite and define the transition probability P

by pxx = 1 for all x ∈ S. Then every state is recurrent and forms its own communication
class.

(b) 1. False. The chain has two communicating classes for ε = 0.
2. False. For all ε ≥ 0, π = ( 1

4 , 1
4 , 1

4 , 1
4 ) is not reversible. It suffices to note that

πcpcd = 1
6 ̸= 1

12 = πdpdc.

3. True. π = ( 1
8 , 1

8 , 1
4 , 1

2 ) is reversible if and only if ε = 0. For ε > 0, we note that

πbpbc = 1
8 · ε ̸= 1

4 · ε = πcpcb.

For ε = 0, we note that πapab = πbpba = 1
16 and πcpcd = πdpdc = 1

6 .
4. True. π = ( 1

8 , 1
8 , 1

4 , 1
2 ) is stationary if and only if ε = 0. For ε = 0, it follows directly

from (c) since reversible implies stationary. For ε > 0,

πc = 1
4 ̸= 1

4 − ε

8 = πbpbc + πcpcc + πdpdc.

5. True. π = ( 1
5 , 1

5 , 1
5 , 2

5 ) is stationary for all ε ≥ 0. To this end, it suffices to check that π
is a left eigenvector associated to the eigenvalue 1 for the matrix

P =


1
2

1
2 0 0

1
2

1
2 − ε ε 0

0 ε 1
3 − ε 2

3

0 0 1
3

2
3

 .
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Solution 5.2

(a) First, we note that X0 ∼ δ1. Second, we note that for all n ≥ 0 and for all k > 0 and ℓ ∈ N,
it follows from the definition of Xn+1 that

P[Xn+1 = ℓ|Xn = k] = P

[
k∑

i=1
Zn+1

i = ℓ

]
=

∑
z1,...,zk≥0: z1+...+zk=ℓ

P [Z1 = z1, . . . , Zk = zk]

=
∑

z1,...,zk≥0: z1+...+zk=ℓ

ν(z1) · . . . · ν(zk)

=: pkl.

For k = 0, we have P[Xn+1 = 0|Xn = 0] = 1 =: p00 for all n ≥ 1. Moreover, by the
independence of the (Zn

i )i,n≥1’s, we have for all x0, . . . , xn+1,

P[Xn+1 = xn+1|X0 = x0, . . . , Xn = xn] = P[Xn+1 = xn+1|Xn = xn],

whenever P[X0 = x0, . . . , Xn = xn] > 0. Consequently,

P[X0 = x0, . . . , Xn+1 = xn+1] = δ1
x0

· px0x1 · . . . · pxnxn+1 ,

and so we have shown that X is a Markov chain MC(δ1, P ) with the transition probability
P = (pxy)x,y∈N defined above.

(b) C0 = {0} is a closed communication class and C1 = {1, 2, . . .} is a communication class that
is not closed. Since C0 ∪ C1 = E, there are no other communication classes.
To see that C0 = {0} is a closed communication class, it suffices to note that p00 = 1. To
see that C1 = {1, 2, . . .} is a communication class that is not closed, we make the following
observations: First, using ν(0), ν(1) > 0, we have pi,i−1 > 0 for all i ≥ 1, and so i → i − 1.
Second, using ν(0) + ν(1) < 1, there exists k ≥ 2 such that ν(k) > 0, and so for all i ≥ 1,
pi,ki > 0 and i → ki. Combining these observations, i → j for all i ≥ 1 and j ≥ 0.

(c) C0 is recurrent since P0[H0 = 1] = 1. C1 is transient, which follows from Corollary 2.14 in
Section 2.10. More precisely, since for i ≥ 1, i → 0 but 0 ̸→ i, it follows that i is transient.

(d) If ν(0) = 0 and ν(1) < 1, then Xn+1 ≥ Xn almost surely for all n ≥ 0 and Xn+1 > Xn

with positive probability. Consequently, there are infinitely many communication classes:
C0 = {0}, C1 = {1}, C2 = {2}, etc. As before, the class C0 is recurrent and closed. The
classes C1, C2, . . . are transient and not closed.

Solution 5.3

(a) Since Xn can take values in {0, . . . , N}, we set S := {0, . . . , N}.
On the one hand, for x < N , we set

px,x+1 = 1 − x

N
,

as in order for Xn to grow by 1, the randomly selected particle must be from container B;
this occurs with probability

# of particles in B

# of total particles = N − x

N
.
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On the other hand, for x > 0, the only other option is for the amount of particles in A to
decrease by 1, which happens with probability x

N , and so

px,x−1 = x

N
.

Whenever |x−y| ≠ 1 for x, y ∈ S, we set pxy = 0. It can easily be verified that P = (pxy)x,y∈S

defines a trasition probability.

(b) Our goal is to identify a stationary distribution; this would represent the equilibrium
distribution of particles. To this end, we try to find a reversible distribution π. By Proposition
3.1, we know that it would also be stationary.
By definition of reversibility, π needs to satisfy for all x ∈ {0, . . . , N − 1},

πxpx,x+1 = πx+1px+1,x.

We use this to calculate πx explicitly and see if this defines a proper distribution.

πx+1 =
πx(1 − x

N )
x+1
N

= πx
N − x

x + 1
(Induction)= π0

N · · · (N − x)
(x + 1)! . (1)

Thus we find that πx =
(

N
x

)
π0. Since π should define a distribution, we must have

∑
x∈S πx = 1.

Hence we find

π0 =
(∑

x∈S

(
N

x

))−1

= 1
2N

. (2)

Hence,

πx =
(

N

x

)
1

2N
,

the binomial distribution; which is (as we have shown) reversible, and thus stationary.

Solution 5.4
First, if π is reversible, then it follows directly from Proposition 3.1 that it is stationary.

Second, we assume that π is stationary and aim to prove that it is reversible. In the case
p = q = 1, every distribution π is trivially reversible and stationary. In the case p ̸= 1 or q ̸= 1, we
deduce from πP = π that

π1(1 − p) = π2(1 − q).

Plugging in π2 = 1 − π1, we get

1 − q = π1(2 − p − q) ⇐⇒ π1 = 1 − q

2 − p − q
.

Hence,

(π1, π2) =
(

1 − q

2 − p − q
,

1 − p

2 − p − q

)
,

which is reversible since π1p12 = π2p21.
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Solution 5.5

(a) We check that the two properties in the definition of transition probability are satisfied. For
every x, y ∈ S, the definition directly implies p̂xy ≥ 0. For every x ∈ S with π(x) = 0,∑

y∈S

p̂xy =
∑
y∈S

1x=y = 1,

and for every x ∈ S with π(x) > 0,∑
y∈S

p̂xy =
∑
y∈S

π(y)pyx

π(x) = π(x)
π(x) = 1

by stationarity of π.

(b) Let f, g ∈ L∞(S).

⟨Pf, g⟩π =
∑
x∈S

(Pf)(x) g(x) π(x) =
∑

x,y∈S

π(x) pxy f(y) g(x)

=
∑

x,y∈S

π(y) p̂yx f(y) g(x) =
∑
y∈S

f(y) (P̂ g)(y) π(y) = ⟨f, P̂ g⟩π

In the third equality, we have used that the definition of P̂ implies π(x)pxy = π(y)p̂yx for
all x, y ∈ S. If π(y) > 0, this is clear. If π(y) = 0, we must have π(x) = 0 or pxy = 0 by
stationarity of π.

(c) If π is reversible, then π(y)p̂yx = π(x)pxy = π(y)pyx, and so the same calculation as in part
(b) shows that ⟨Pf, g⟩π = ⟨f, Pg⟩π, i.e. P is self-adjoint.
Fix arbitrary x, y ∈ S and set f := δx and g := δy. If P is self-adjoint, then

π(y)pyx = ⟨Pf, g⟩π = ⟨f, Pg⟩π = π(x)pxy,

and so p is reversible.
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