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Solution 5.1

(a)

. True. ™= (

. False. There are three communicating classes.

. False. The state c is transient since d can be reached from ¢ but ¢ cannot be reached

from d. Since the communicating class of b is {b, ¢}, the communicating class theorem
implies that b is also transient.

. True. By the previous argument we can see that the classes {a} and {b, ¢} are transient.

Since the state space is finite, a result from the course gives that there exists at least
one recurrent state, and so the class {d, e} must be recurrent.

. False. By definition, an irreducible Markov chain has exactly one communication class.

5. True. For example, take S to be countably infinite and define the transition probability P

by pzr = 1 for all x € S. Then every state is recurrent and forms its own communication
class.

. False. The chain has two communicating classes for ¢ = 0.

. False. For all e >0, 7 = (%, 1 1 1) is not reversible. It suffices to note that
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. True. m = (%, %, i, %) is reversible if and only if e = 0. For € > 0, we note that
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For € = 0, we note that m,pep = TpPre = 1—16 and TePeq = TaPde = %,
. True. ™= (4, %,%,3) is stationary if and only if ¢ = 0. For ¢ = 0, it follows directly

from (c) since reversible implies stationary. For € > 0,
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Te = - = TbPbe + TeDee + TdDde-
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%, %, %, %) is stationary for all ¢ > 0. To this end, it suffices to check that =

is a left eigenvector associated to the eigenvalue 1 for the matrix

z 1 0 0

% %75 € 0

P= 0 1_,. 2
3 3

1 2

0 0 3 2

1/4



Applied Stochastic Processes, FS 2025
D-MATH Solution sheet 5

Solution 5.2

(a)

First, we note that X ~ d'. Second, we note that for all n > 0 and for all £ > 0 and ¢ € N,
it follows from the definition of X, that

k
Z Zntt = e]

i=1

Pl X, =0X, =k =P

- E P[lezl,...,Zk:zk]
21,500,265 200 21+ 2 =L

= Z v(z1) ... v(zk)

214032k 200 Z14. A2 =4

= Pki-
For k = 0, we have P[X,,11 = 0|X,, = 0] = 1 =: pgo for all n > 1. Moreover, by the
independence of the (Z7); ,>1’s, we have for all xg, ..., Zn41,
P Xpi1 = Znt1]|Xo = 2oy« -, Xopn = 2] = P[Xpp1 = p1| X = 0],
whenever P[X( = g, ..., X, = x,] > 0. Consequently,
PXo =20y, Xnt1 = Tnt1] = 69160 “Paoxy "+ Papwniis

and so we have shown that X is a Markov chain MC(§!, P) with the transition probability
P = (Pay)a,yen defined above.

Co = {0} is a closed communication class and C; = {1,2,...} is a communication class that
is not closed. Since Cy U Cy = E, there are no other communication classes.

To see that Cp = {0} is a closed communication class, it suffices to note that pgo = 1. To
see that C1 = {1,2,...} is a communication class that is not closed, we make the following
observations: First, using v(0),v(1) > 0, we have p; ;_1 > 0 for all i > 1, and so ¢ — i — 1.
Second, using v(0) + v(1) < 1, there exists k > 2 such that v(k) > 0, and so for all ¢ > 1,
Diki > 0 and i — ki. Combining these observations, ¢ — j for all ¢ > 1 and j > 0.

Cy is recurrent since Py[Hy = 1] = 1. (4 is transient, which follows from Corollary 2.14 in
Section 2.10. More precisely, since for i > 1, ¢ — 0 but 0 4 4, it follows that 4 is transient.

If v(0) = 0 and v(1) < 1, then X,,41 > X,, almost surely for all n > 0 and X,,41 > X,
with positive probability. Consequently, there are infinitely many communication classes:
Coy = {0}, Cy = {1}, C3 = {2}, etc. As before, the class Cj is recurrent and closed. The
classes C1, (s, ... are transient and not closed.

Solution 5.3

(a)

Since X, can take values in {0,...,N}, we set S :={0,...,N}.
On the one hand, for x < N, we set
X

Px,z+1 = 1- N,

as in order for X, to grow by 1, the randomly selected particle must be from container B;
this occurs with probability

# of particlesin B~ N —z
# of total particles ~ N
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On the other hand, for > 0, the only other option is for the amount of particles in A to
decrease by 1, which happens with probability +, and so

X

Pxx—1 = N

Whenever |z —y| # 1 for z,y € S, we set pg,, = 0. It can easily be verified that P = (pyy)z,yes
defines a trasition probability.

(b) Our goal is to identify a stationary distribution; this would represent the equilibrium
distribution of particles. To this end, we try to find a reversible distribution 7. By Proposition
3.1, we know that it would also be stationary.

By definition of reversibility, 7 needs to satisfy for all z € {0,..., N — 1},

TePz,x+1 = Tg+1Px+1,2-

We use this to calculate 7, explicitly and see if this defines a proper distribution.

’/Tz(l — %) - N—z (Indlgtion) N(N—JI)
zil T+l

- 0T+ 1)!

(1)

Thus we find that 7, = (1;[ )7o. Since 7 should define a distribution, we must have Y~ ¢ 7, = 1.

Hence we find
MY 1
m:<z(x)> - 57 @)
€S

N\ 1
Ty = AN’
x ) 2N

the binomial distribution; which is (as we have shown) reversible, and thus stationary.

Hence,

Solution 5.4
First, if 7 is reversible, then it follows directly from Proposition 3.1 that it is stationary.

Second, we assume that 7 is stationary and aim to prove that it is reversible. In the case
p = q =1, every distribution 7 is trivially reversible and stationary. In the case p # 1 or ¢ # 1, we
deduce from 7P = 7 that

m(L —p) =m(1—q).
Plugging in mo = 1 — w1, we get
l—q
2-p—q

(7T1,7T2)_< — Lp >,

2—p—qg'2—-p—q

l—gq=m2-p—q <<= m=

Hence,

which is reversible since m1p12 = mTapo1.
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Solution 5.5

(a)

We check that the two properties in the definition of transition probability are satisfied. For
every x,y € S, the definition directly implies p,,, > 0. For every = € S with w(z) = 0,

Zﬁxy = Z 1x=y = la

yeS yeS
and for every xz € S with 7(x) > 0,
A T\Y)Pyz X
-5 5
yeS yeSs

by stationarity of .

Let f,g € L*>(S).

(Pf.g)x =Y (PH)g(@) (@) = Y () pay f(y) 9(x)

zeS z,yEeS
= > 7 (W) by fW) (@) = D f(y) (Pg)(y) 7(y) = (f, Pg)x
T,yeS yeS

In the third equality, we have used that the definition of P implies T(Z)pyy = T(y)Pys for
all z,y € S. If m(y) > 0, this is clear. If n(y) = 0, we must have w(z) = 0 or py, = 0 by
stationarity of .

If 7 is reversible, then 7(y)pys = 7(2)psy = 7(Y)Pye, and so the same calculation as in part
(b) shows that (Pf,g)x = {f, Pg)r, i.e. P is self-adjoint.

Fix arbitrary =,y € S and set f :=d, and g :=,. If P is self-adjoint, then

W(y)py:v = <Pfa g>7r = <f7 Pg>7T = W(x)sz,

and so p is reversible.
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