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Solution 8.1

(a)

1.

False. If it were a renewal process we would have that in particular 75 = 0 a.s, which we
exclude from the definition since p would be 0.

True. Using Theorem 5.7 we have:

False. According to Theorem 5.7, this limit is /% + L

e

4. False. The resulting process can take negative values, for instance by taking 77 = 2 a.s,

and T] = 2 a.s.

False. Taking T; =T} =1 a.s, we have that (N; + N/) = (2N;), which is not a renewal
process for similar reasons as in 1. Note that the two processes are independent since
they are deterministic.

False. For instance, we have that:
1
P({NTN1 > 1}m{N17N0:0}) = PN - No=0) =5,

while it is clear that P(No — N; > 1) < 1.

False. We have that P(N. > 1) = 5, whereas for ¢t > 0, P(Ny;. — N; > 1) > £. Indeed,
define n; to be such that T,,, > ¢ < T, +1. We can condition on the value of ¢t —T,,,:

2
P(Nyy. — N, > 1) = / P(Niye — Ny > 1|t — Ty, = s)f(s)ds, (1)
0

where f(s) is the density of the random variable (¢t — T,,,), which we do not need to
compute.

Since we have that, for s > 0, P(Nyyc — Ny > 1|t —T,, =s) > 5, and from (??) we
know that P(N; . — Ny > 1) is just an average of a quantity bigger than § against a
continuous density, we conclude.

False. For instance, we have that:

4. False. Among other reasons, we have that Ny > 1 a.s.

5. True. This is true by the Elementary renewal theorem.
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Solution 8.2

(a) Since T} =1 a.s., we also obtain Sy =T} + ...+ T = k a.s., and so for every ¢ > 0,

oo [e%¢)
Nt == Z 1Sk§t == Z ]_kgt == LtJ
k=1 k=1

In particular, E[N;] = [t] for every ¢ > 0. This function starts at 0, is piecewise constant and
makes jumps of height 1 at every integer value of ¢.

(b) As in the proof of Proposition 5.3, we have for every ¢ > 0,

m(t) = E[N;] = ipm o+ T <t = iF*’“(t).
k=1 k=1

We now focus on computing F** for k > 1. Since T} ~ U(0, 1), its cumulative distribution
function F is given by F'(t) =t - Llo<i<1 + 1;>1. We note that F has density f(t) = lo<i<1-
This allows us to compute for k = 2,

t t min{1,t}
(FxF)(t) = / F(t—s)dF(s) = / F(t— s)lo<s<1ds = / (t—s) Lo<t—s<1 + 1i_s>1ds
0 0 0

min{1,t}
= / (t—5) 1y_1<o<t + 1ocy—1ds.
0

For ¢ € [0, 1], we obtain

t
(FxF)(t) = / (t —s)ds = [st — s2/2]h = t2/2,
0
and in the same way, by iteration, also
FR(t) = t* /K.

Summing up, we conclude that for ¢ € [0, 1],
m(t) =Y tF/kl=e' —1.
k=1

This allows us to draw the function for ¢ € [0,1]. Computations for larger values of ¢ are
possible but require more care. We also note that the renewal equation provides an alternative
way to compute m(t).

(¢) Using Proposition 4.1, we have for every ¢t > 0, N; ~ Poisson(2t), and so m(t) = 2¢. This
function starts at 0 and is linear with slope 2.

(d) Using Proposition 4.2 with a = 1 and 8 = 1/2, we have for every t > 0,

1t]
Ny~ Xo+ > (14 X5),

i=1

where the X;’s are i.i.d. geometric variables with parameter 1/2. Since X; has expectation
-8 — 1, we have m(t) = 1+ 2|t]. This function starts at 1, is piecewise constant and makes
jumps of height 2 at every integer value of t.

2/ 4



Applied Stochastic Processes, FS 2025
D-MATH Solution sheet 8

Solution 8.3

Let @ denote the distribution function of the standard normal distribution, and let [z] be the
smallest integer greater than or equal to = for x € R. Let S, := Z?zl T;, then using the central
limit theorem we have

lim P[(S, — nu)/ovn < z] = ®(z)

n—oo

uniformly in x € R. Note that ® is continuous and so it does not matter whether we consider the
event with strict inequality < or weak inequality < on the left side.
For simplicity of notation, we define

N —t/p

o\t

Now, for given t > 0 and x € R, since V; is integer-valued, we have
P[Z; < z] = P [Nt < [a(o\/t/13) +t//ﬂ} .

Setting h(t) := [z(o+/t/u3) +t/u], from
{Ne <h()} = {Sh) > t}

Zti

we obtain that
PIZ, < 2] = B[Si) > 1] = P (Suqy — wh(t)) fo /R > (t — puh(t)) fo/RlD)]

Tt suffices to show h(t) — oo and z(t) := (t — ph(t))/o\/h(t) — —x as t — oo, since in that case
the uniform convergence in the central limit theorem will imply

P [(Sue) — #h(0)/o /(D) > 2(0)] = 1 - B(~z) = B(a),

which means that P[Z; < ] — ®(z) and therefore Z; converges to the standard normal distribution
in law as t — oco. Indeed, if a sequence of functions (f,),>1 converges uniformly to a continuous
function f, and a sequence of real numbers (y,),>1 converges to some y € R, then one can easily
prove that lim, o0 fr(yn) = f(y). Now for any sequence (¢,),>1 tending to infinity, we can define
fn as the distribution function of (S, ) — nh(tn))/o+/h(t,) and y, = z(t,). Since f,, converges

uniformly to the function f(z):=1— ®(x) and y,, converges to y := —x, using the above claim we
can deduce the desired result.
The fact that lim;_, o h(t) = 0o is easy to see. To show that lim;_, z(t) = —z, we first note that

by definition h(t) = z(o+/t/p3) +t/p + €(t), where |e(t)| < 1, and hence

sy = LTI + b/t ()]
a+/h(t)
(ot
ot/
— —x as t — oo.

Solution 8.4

(a) First, we note that the set A:= {a’ > 0:P[T} € a’Z] = 1} is non-empty and bounded since
T3 is lattice and takes values in R. Second,

b:=min{d' > 0:P[T} =V'] > 0}

is well-defined. Indeed, the set B := {0’ > 0: P[T1 = b'] > 0} is non-empty since P[T7 > 0] > 0
and T is lattice. Furthermore, inf B is attained as a minimum because for any o’ € A,

inf B = inf{b' € a'Z~o : P[T}y = V'] > 0},
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(d)

and a'Z~o C R is a closed set that is bounded from below. We also note that b is a multiple
of a’ for any a’ € A. Finally, we set

kE* :=min{k > 1:b/k < sup A}.

If sup A is not attained, then we can choose a € A satisfying b/k*™ < a < sup A. But this
contradicts our previous observation that a divides b. Hence, sup A is attained and a is
well-defined.

Since (Ny)i>o is a renewal process with jump times in aZ, it directly follows that ]\~/t = Nat
defines a renewal process with integer-valued jump times.

We first note that for all ¢ € S, P[T} = 4] > 0. Thus, p = (pij)i,jes is well-defined and by
definition, p;; > 0 for all ¢, 5 € S. Furthermore, for 7 > 1,

> b =pii1=1,

JjeSs

D poj =) PTi=4]=1,

jeS j>1

and for i = 0,

since P[T} = 0] = 0. Hence, P is a transition probability.
Case 1: S=1{0,1,...,N -1}

The chain is irreducible since pg y—1 = P[71 = N] > 0 and for every j € {0,1,...,N — 1},
(N-1-j)

we have py_; ;=1 Furthermore, the hitting time satisfies Hy < N and so the chain is
recurrent.
Case 2: S=N

We first note that Po[Hy = +oo] = P[T; = +o00] = 0, and so the state 0 is recurrent.
Furthermore, for every ¢ > 1, there exists some (minimal) j > ¢ such that P[T} = j] > 0, and

so we have
j—i—1

P =pojo1 H Pj—kj—k—1=P[T1 =j]>0.
k=1

Hence, 0 — 4, and in fact, 0 <+ ¢ by the recurrence of 0. This concludes that the chain is
irreducible and recurrent.

Before we show that the chain is aperiodic, we note that for any k € N (satisfying k < N if
n < 00),

j—1

Py[Hy = j] = po,j—1 - (H pjk,jkl) =P[Th =j].

k=1

Hence, the law of Hy under Py is the same as the law of 77 under P. Finally, let d be the

period of the state 0 (and therefore of the chain P). By definition, we have that pég) =0 for
all n ¢ dZ. Hence, Hy € dZ Py-a.s. and equivalently, Ty € dZ P-a.s.. This implies that d =1
since d > 2 would contradict a = 1.

For any ¢ > 0,
[t] [t]

m(t) =E[N] =E |} 1rosr<| =Eo [ Ix.=o| = Zpég)
i21 n=1 n=1
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By the theorem on the density of visit times for Markov chains (Sections 3.7 — 3.8),

Lt

o1 (n) 1
lim — = .
500 [t] nzzlp 00 = Ey[Hy]

Hence,
m(t)

lim :hmm—t): 1 =

1
t—oo t—00 |_ J E[Tl] p

(e) For s <t, the computation from part (d) shows that

[t]
m(t)—m(s)= > ply

n=|s]+1

By the results on the convergence of aperiodic, irreducible Markov chains (Section 2.8), we
have

1
— as n — o0.
Eo[Ho]

Since for k € N the interval (¢,t 4 k] contains exactly k integers, we conclude that

p(()g) = PO[Xn = 0] —

k

tlggo m(t+ k) —m(t) = .
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