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Chapter 1

Markov Chains: Definitions and

construction

Setup:

• S finite or countable set, equipped with the sigma algebra P(S).

• (Ω,F ,P) fixed probability space.

Goals:

• Define and motivate Markov Chains via transition probabilities.

• Present the connection with linear algebra and graph theory.

• Simulation of MC from uniforms.

1.1 Transition probabilities and Markov Chains

Definition 1.1. We call distribution on S a probability measure µ on S. It is identified

with a collection µ = (µx)x∈S of numbers satisfying

(i) ∀x ∈ S µx ≥ 0, and

(ii)
∑

x∈S µx = 1.

7
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Example 1.1 (Uniform distribution). If S is finite, the uniform distribution µ is defined by

∀x ∈ S µx =
1

|S|
.

.

Example 1.2 (Dirac distribution). For fixed z ∈ S, the Dirac distribution δz = (δzx)x∈S at z is

defined by

∀x ∈ S δzx =

{
1 if x = z,

0 if x ̸= z.

Definition 1.2. A transition probability is a collection P = (px,y)x,y∈S such that:

(i) ∀x, y ∈ S px,y ≥ 0, and

(ii) ∀x ∈ S
∑

y∈S px,y = 1.

Equivalently, P is a transition probability if for every fixed x ∈ S, px,· := (px,y)y∈S is a

distribution on S. There are a few different representations of transition probabilities.

Graph representation We can see (S, P ) as a weighted oriented graph with the property

that the weights leaving any vertex must be nonnegative and sum to 1: the vertex set is S, the

edges are all the pairs (x, y) ∈ S2, and the weights are pxy.
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Figure 1.1: Transition probabilities as weighted graphs.

Matrix interpretation Assume S is finite, say S = {1, . . . , N}. Then P = (pij)1≤i,j≤N
is a matrix with nonnegative entries (by Item (i)), and such that each line sums to one (by

Item (ii)). Such a matrix is called a stochastic matrix. When S is a general finite set, we can

always enumerate its elements to see P as a |S| × |S| matrix.
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Operator interpretation Write L∞(S) for the set of bounded function on S, equipped

with the norm ∥f∥∞ = supx∈S |f(x)|. Let P be a transition probability. To every function

f ∈ L∞(S), we associate a function Pf defined by

∀x ∈ S (Pf)x =
∑
y∈S

px,yfy.

Since |
∑

y∈S px,yfy| ≤
∑

y∈S px,y|fy| ≤ ∥f∥∞, the function Pf is well defined, bounded, and

satisfies ∥Pf∥∞ ≤ ∥f∥∞. This allows us to identify P with the continuous linear operator

f 7→ Pf acting on L∞(S). Items (i) and (ii) correspond to the properties that P ≥ 0 (i.e.

Pf ≥ 0 for all f ≥ 0 ) and P1 = 1.

Definition 1.3. Let P be a transition probability, µ a distribution on S. A sequence

X = (Xn)n≥0 of random variables with values in S is a Markov Chain with initial distribu-

tion µ and transition probability P if for every n ≥ 0 and x0, . . . , xn ∈ S

P (X0 = x0, . . . , Xn = xn) = µx0px0,x1 · · · pxn−1,xn .

In this case, we write X ∼ MC(µ, P ).

Definition 1.4. A sequence X = (Xn)n≥0 of random variables with values in S is a

Markov Chain if there exists a distribution µ and a transition probability P such that

X ∼ MC(µ, P ).

1.2 n-Step Transition Probabilities

In this section, we fix a transition probability P on S.

Definition 1.5. Let n ≥ 0. The n-step transition probability P n = (p
(n)
xy )x,y∈S associated

to P is defined by p0xy = 1x=y and

p(n)xy =
∑

z1,...,zn−1∈S

pxz1pz1z2 · · · pzn−1y.

for every n ≥ 1, x, y ∈ S.
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In the matrix interpretation of transition probabilities, P n coincides with the n-th power of P .

In the operator interpretation, P n is the n-fold composition of P by itself.

From the Markov Chain perspective, p
(n)
xy is the probability to move from x to y in n steps,

as stated in the following proposition.

Proposition 1.1. Let x, y ∈ S, n ≥ 0. If X ∼ MC(δx, P ), then

p(n)x,y = P(Xn = y).

Notice that the proposition above implies that P n is itself a transition probability.

Proof. By first using the definition of the n-step transition probability and then the definition

of a Markov Chain, we have

p(n)xy =
∑

z0,z1,...,zn−1∈S

δxz0pz0z1pz1z2 · · · pzn−1y

=
∑

z0,...,zn−1∈S

P(X0 = z0, X1 = z1 . . . , Xn−1 = zn−1, Xn = y) = P(Xn = y),

where for the last equality we used the disjoint union

{Xn = y} =
⋃

z0,...,zn−1∈S

{
X0 = z0, . . . , Xn−1 = zn−1, Xn = y

}
.

1.3 Simulation of a distribution

Lemma 1.2. Let µ be a distribution on S. There exists a measurable mapping Φµ : [0, 1]→
S such that

∀x ∈ S P(Φµ(U) = x) = µx,

where U ∼ U([0, 1]) is an arbitrary uniform random variable.

Proof. We consider a partition [0, 1) = ∪x∈SIx, where each Ix is an interval of length µx. One

way to construct such intervals is to enumerate the elements of the state space S = {xj, j ∈ J}
where J = {0, . . . , N} in the finite case and J = N in the infinite case and define

Ixj = [µx0 + . . .+ µxj−1
, µx0 + . . .+ µxj)
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for every j ∈ J . Let Φ : [0, 1]→ S defined by Φ(u) = x if u ∈ Ix, and Φ(1) = x0 where x0 ∈ S
is arbitrary. This way, if U ∼ U([0, 1]) we have for every x ∈ S

P(Φ(U) = x) = P(U ∈ Ix) = µx,

as desired. Notice that the chosen value of Φ(1) does not matter since U < 1 almost surely.

1.4 Simulation of a Markov Chain

Proposition 1.3. Let µ be a distribution and P a transition probability on S. Let Φµ :

[0, 1]→ S as in Lemma 1.2. For each x ∈ S, let Φx : [0, 1]→ S measurable such that

Φx(U) ∼ px · ( ie ∀x, y ∈ S P(Φx(U)) = px,y),

for arbitrary U ∼ U([0, 1]). Let U0, U1, . . . be a sequence of iid uniform random variables

on [0, 1]. The sequence X0, X1, . . . defined inductively by{
X0 = Φµ(U0)

Xn = ΦXn−1(Un) n ≥ 1

is a Markov Chain with initial distribution µ and transition probability P .

Proof. Let n ≥ 0 and x0, . . . , xn ∈ S. By first applying the definition of X, and then using

independence of the Ui’s, we get

P (X0 = x0, X1 = x1, . . . , Xn = xn) = P
(
Φµ(U0) = x0,Φx0(U1) = x1, . . . ,Φxn−1(Un) = xn

)
= µx0px0x1 · · · pxn−1xn .

1.5 One-step Markov Property and Homogeneity.

A central property of Markov Chain is its absence of memory. Furthermore, the chains we are

considering are homogeneous in time: if Xn = x, the probability to jump from x to y does not

depend on the time n. These two properties are formalized as follow:
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Proposition 1.4. Let X be a Markov Chain.

[1-step Markov Property] For all n ≥ 0 and x0, . . . , xn+1 ∈ S

P (Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = P (Xn+1 = xn+1 | Xn = xn) .

[Homogeneity] For all m,n ≥ 0 and x, y ∈ E

P (Xn+1 = y | Xn = x) = P (Xm+1 = y | Xm = x) .

Note: By convention when we write P (A | B) we assume P (B) > 0.

Remark 1.5. Conversely, a sequence of random variables satisfying the 1-Step Markov Property

and Homogeneity is a Markov Chain (see Exercise Sheet 2).

Proof. Let n ≥ 0, x, y ∈ S. By summing over all the possible values for X0, . . . , Xn−1, we have

P (Xn = x,Xn+1 = y) =
∑

z0,...,zn−1∈S

P (X0 = z0, . . . , Xn−1 = zn−1, Xn = x,Xn+1 = y)

=
∑

z0,...,zn−1∈S

µz0pz0z1 · · · pzn−1x · pxy

= P(Xn = x) · pxy.

By dividing both sides by P(Xn = x) (assuming it is positive), we obtain

P (Xn+1 = y |Xn = x) = pxy.

Since the right hand side does not depend on n, the equation above already establishes Homo-

geneity.

For the 1-Step Markov Property, let us consider x0, . . . , xn+1 ∈ S satisfying

P (X0 = x0, . . . , Xn = xn) > 0.

By using the definition of a Markov Chain,

P (Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) =
P (X0 = x0, . . . , Xn+1 = xn+1)

P (X0 = x0, . . . , Xn = xn)

=
µx0px0x1 · · · pxnxn+1

µx0px0x1 · · · pxn−1xn

= pxnxn+1 = P (Xn+1 = xn+1 | Xn = xn) .
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1.6 Law of a Markov Chain

Motivation: Given µ, P , is there a unique MC(µ, P )? Can two different (µ, P ) give rise to

two different MC? To formalize and answer such questions we introduce the law of the process.

Definition 1.6. A trajectory is a sequence x = (xn)n≥0 of elements of S. We equip the set

SN of trajectories with the product sigma algebra

P(S)⊗N = σ({CJ,A : J ⊂ N finite , A ⊂ P(S)J})

where CJ,A = {x ∈ SN : ∀j ∈ J xj ∈ Aj}.

Proposition 1.6. A mapping X : Ω → SN is measurable if and only each coordinate

Xn : Ω→ S is measurable.

In probabilistic terms: X = (Xn)n∈N is a random variable in SN if and only if each coordinate

Xn is a random variable in S.

Proof. For each n ∈ N and a ∈ S, let

Cn,a = {x ∈ SN : xn = a}.

One can check that the Cn,a, n ∈ N, a ∈ S generate the product sigma algebra. Hence for every

mapping X : Ω→ SN

X measurable⇐⇒ ∀n ∈ N ∀a ∈ S {X ∈ Cn,a} ∈ F
⇐⇒ ∀n ∈ N ∀a ∈ S {Xn = a} ∈ F
⇐⇒ ∀n ∈ N Xn measurable.

In particular a Markov Chain is a random variable with values in the product space SN (since

each coordinate is a random variable). Hence, to each Markov Chain X we can associate its law

PX , which is a probability measure on the space SN of trajectories. The following proposition

shows that the initial distribution µ together with the transition probability P characterize the

law of the Markov Chain.
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Proposition 1.7. Let µ, µ′ be two distributions, P, P ′ two transition probabilities. Let

X,X ′ be two Markov Chains such that X ∼ MC(µ, P ) and X ′ ∼ MC(µ′, P ′).

(µ, P ) = (µ′, P ′) =⇒ PX = PX′

Proof. For every n ∈ N, and a = (a0, . . . , an) ∈ Sn+1, let

Cn,a = {x ∈ SN : x0 = a0, . . . , xn = an}.

The set Cn,a is a particular cylinder of the product sigma-algebra,where the first n coordinates

of the trajectory are fixed. One can check that the collection {Cn,a, n ∈ N, a ∈ Sn+1} is a

π-system generating the product sigma algebra. Furthermore, for every n ∈ N and a ∈ Sn+1,

we have

PX(Cn,a) = P(X ∈ Cn,a)
= P(X0 = a0, . . . , Xn = an)

= P(X ′
0 = a0, . . . , X

′
n = an) = PX′(Cn,a).

By Dynkin Lemma, since the measures PX and PX′ coincide on a π-system generating the

sigma-algebra, they must be equal.

Remark 1.8. The reverse implication does not hold in general. It holds under the condition

that for every x ∈ S, there exists n ∈ N and a0, . . . an such that µa0pa0a1 · · · pan−1an > 0.



Chapter 2

Markov Property

Goals:

• Understanding of the setup with a collection of probability measures.

• Intuition in the Markov property.

• Formal statement and applications.

2.1 Setup

Theorem 2.1. Let S be finite or countable set, equipped with the sigma algebra P(S). Let

P = (pxy)x,y∈S be a transition probability on S. There exist:

• a measurable space (Ω,F),

• a collection of probability measures (Pµ)µ dist. on (Ω,F), and

• a sequence of random variables X = (Xn)n≥0 on (Ω,F), such that

X ∼ MC(µ, P ) under Pµ.

for every distribution µ on S.

Proof. We first fix a distribution ν on S with νx > 0 for every x ∈ S. If S is finite, we can

choose the uniform distribution. If S = {s1, s2, . . .} is infinite, we can choose νsi = 2−i, i ≥ 1.

Fix some abstract probability space (Ω,F ,P) and a Markov Chain X ∼ MC(ν,P) on this space.

15



16 CHAPTER 2. MARKOV PROPERTY

For every z in S, set Pz = P ( · | X0 = x). This way, for every z ∈ S, n ≥ 0, and x0, . . . , xn ∈ S,
we have

Pz(X0 = x0, . . . , Xn = xn) =
P(X0 = z,X0 = x0, . . . , Xn = xn)

P(X0 = z)

=
1z=x0νzpx0x1 · · · pxn−1xn

νz

= 1z=x0px0x1 · · · pxn−1xn .

For every distribution µ, define Pµ =
∑

z∈S µzPz. This defines a probability measure (since the

µz sum to 1) and for every n ≥ 0 and x0, . . . , xn ∈ S, we have

Pµ(X0 = x0, . . . , Xn = xn) =
∑
z∈S

µzPz(X0 = x0, . . . , Xn = xn)

=
∑
z∈S

µz1z=x0px0x1 · · · pxn−1xn

= µx0px0x1 · · · pxn−1xn

Setup for the chapter:

• S finite or countable set, equipped with the sigma algebra P(S).

• P transition probability.

• (Ω,F , (Pµ)µ distribution on S) probability spaces.

• X = (Xn)n≥0 random variables such that for every distribution µ

X ∼ MC(µ, P ) under Pµ.

2.2 Simple Markov Property

Notation. For every n ∈ N, write Fn = σ(X0, . . . , Xn).

As we have seen in Section 1.5, a Markov Chain satisfies two key properties: absence of

memory and homogeneity. The simple Markov Property can be seen as the combination of

these two properties. In words, it states that for every fixed time k ∈ N and state x ∈ S, the
following holds:
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“Condition on Xn = x, (Xk+n)n≥0 is a MC(δx, P ), independent of Fk.”

This is formalized in the theorem below.

Theorem 2.2 (Simple Markov Property (MP)). Let µ be a distribution, x ∈ S, and k ∈ N.
For every f : SN → R measurable and bounded, for every Z Fk-measurable, bounded random

variable, we have

Eµ

(
f((Xk+n)n≥0) · Z | Xk = x

)
= Ex

(
f((Xn)n≥0)

)
Eµ

(
Z | Xk = x

)
. (2.1)

Lemma 2.3. Let µ be a distribution on S. Let x ∈ S, k ∈ N. For every N ≥ 0, a0, . . . ak ∈ S,
b0, . . . , bN ∈ S, we have

Pµ(Xk = b0, . . . , Xk+N = bN , X0 = a0, . . . , Xk = ak |Xk = x)

= Px(X0 = b0, . . . , XN = bN)Pµ(X0 = a0, . . . , Xk = ak |Xk = x)

Proof. Without loss of generality, we may assume x = b0 = ak (otherwise both sides vanish,

and the equality is trivially true). By definition, and using δxb0 = 1, we have

Pµ(Xk = b0, . . . , Xk+N = bN , X0 = a0, . . . , Xk = ak)

= µa0pa0a1 · · · pak−1akδ
x
b0
pb0b1 · · · pbN−1bN

= Pµ(X0 = a0, . . . , Xk = ak)Px(X0 = b0, . . . , Xk = bk)

The statement follows by dividing both sides by Pµ(Xk = ak) = Pµ(Xk = x).

The lemma above establishes Theorem 2.2 when f is of the form f(ξ) = 1ξ0=y0,...ξN=yN and

Z = 1X0=x0,...,Xk=xk . The extension to general functions follows from standard measure-theoretic

approximation arguments, detailed below.

Proof of Theorem 2.2. Let Z be an Fk-measurable, bounded random variable. By linearity,

Lemma 2.3 implies that

Eµ (1A((Xk+n)n≥0) · Z | Xk = x) = Ex (1A((Xn)n≥0))Eµ (Z | Xk = x) . (2.2)

for every A ⊂ SN of the form A = {ξ ∈ SN : ξ0 = y0, . . . ξN = yN}, for N ≥ 0 and

y0, . . . , yN ∈ S. The collection of such sets form a π-system generating the product σ-algebra

on SN. Furthermore, the collection of sets A satisfying (2.2) is a λ-system. Hence, by Dynkin’s

Lemma, Equation (2.2) is satisfied for all A ⊂ SN measurable.

Now, let f : SN → R measurable and bounded. Equation (2.1) is proved by first approxi-

mating f by step functions fk, and then using linearity.
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Corollary 2.4. Let µ be a distribution on S, x ∈ S, k ∈ N. For all f : SN → R measurable

and bounded, we have

Eµ (f((Xk+n)n≥0) | Xk = x) = Ex (f((Xn)n≥0)) .

Proposition 2.5 (Chapman Kolmogorov (CK)).

∀m,n ≥ 0 ∀x, y ∈ S p(m+n)
xy =

∑
z∈S

p(m)
xz p

(n)
zy .

Proof. Fix m,n and x, y ∈ S.

p(m+n)
xy = Px (Xm+n = y) =

∑
z∈S

Px (Xm+n = y | Xm = z)Px (Xm = z)

(MP)
=
∑
z∈S

Pz (Xn = y)Px (Xm = z) =
∑
z∈S

p(m)
xz p

(n)
zy .

2.3 Strong Markov Property

Definition 2.1. Let T : Ω→ N ∪ {+∞} be a random variable with values in N ∪ {+∞}.
We say that T is an (Fn)-stopping time if

∀n ∈ N {T = n} ∈ Fn.

Example 2.1 (Hitting Times). Let A ⊂ S, x ∈ S, the hitting times

HA = min{n ≥ 1 : Xn ∈ A} and Hx = min{n ≥ 1 : Xn = x}

are stopping times.

Definition 2.2. Let T be a stopping time. The stopped sigma-algebra is defined by

FT = {A ∈ F : ∀n ∈ N : {T = n} ∩ A ∈ Fn}.

In words, the strong Markov property says the following:

”Conditioned on {T <∞, XT = x}, (XT+n)n≥0 is a MC(δx, P ) independent of FT”

This is formalized in the following theorem, called the strong Markov property.
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Theorem 2.6 (Strong Markov Property (SMP)). Let µ be a distribution on S, T an (Fn)-
stopping time. Let x ∈ S, then for all f : SN → R measurable and bounded, and Z

FT -measurable and bounded, we have:

Eµ (f((XT+n)n≥0) · Z | T <∞, XT = x) = Ex (f((Xn)n≥0))Eµ (Z | T <∞, XT = x) .

Proof. We will multiply each side of the equation by Pµ (T <∞, XT = x).

Eµ (f((XT+n)n≥0)Z1T<∞,XT=x) =
∑
k≥0

Eµ (f((Xk+n)n≥0)Z1T=k,XT=k)

=
∑
k≥0

Eµ (f((Xk+n)n≥0)Z1T=k | Xk = x)Pµ (Xk = x)

(MP)
=
∑
k≥0

Ex (f((Xn)n≥0))Eµ (Z1T=k,Xk=x)

= Ex (f((Xn)n≥0)
∑
k≥0

Eµ (Z1T=k,Xk=x) = Ex (f((Xn)n≥0))Eµ (Z1T<∞,XT=x) .

2.4 Inter-visit times

Definition 2.3. Fix x ∈ S. The sequence (Ti)i≥1 of inter-visit times at x is defined by

induction by setting T1 = Hx and for all i ≥ 1

Ti+1 =

{
min{n ≥ 1 : XT1+...+Ti+n = x} if Ti <∞,

+∞ otherwise.

For every i ≥ 1, the time S = T1 + · · · + Ti represents the time of the i-th visit of x. This

is a stopping time since for every n ∈ N

{S ≤ n} =
{ n∑

k=1

1Xk=x ≥ i

}
∈ Fn.
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T1 T2 T3

T4 T5

time

S

x

X0

Figure 2.1: Illustration of the inter-visit times a x.

Proposition 2.7. Let µ be a distribution, x ∈ S. For every i ≥ 1, we have

Pµ(Ti <∞) = Pµ(Hx <∞)
(
Px(Hx <∞)

)i−1
. (2.3)

Proof. We prove the result by induction on i. Equation (2.3) holds for i = 1 because T1 = Hx.

Now let i ≥ 1 and assume that (2.3) holds. In order to have Ti+1 <∞, we must have S <∞,

where S = T1 + · · ·+ Ti is the time of the i-th visit of x. Therefore

Pµ(Ti+1 <∞) = Pµ (Ti+1 <∞, S <∞) = Pµ (Ti+1 <∞|S <∞) ·Pµ(S <∞). (2.4)

Since S < ∞ if and only if Ti < ∞, we can apply the induction hypothesis to compute the

second term in the product above:

Pµ(S <∞) = Pµ(Ti <∞) = Pµ(Hx <∞)
(
Px(Hx <∞)

)i−1
.

To compute the conditional probability in Equation (2.4), we apply the strong Markov property

with the stopping time S. Since it is our first use, let us detail how it is applied. Using that

XS = x if S <∞, and expressing the event {Ti+1 <∞} in terms of the process (XS+n)n≥0, we

get

Pµ (Ti+1 <∞|S <∞) = Pµ (Ti+1 <∞|S <∞, XS = x) .

= Pµ (∃n ≥ 0 s.t. XS+n = x|S <∞, XS = x)

SMP
= Px(∃n ≥ 0 s.t. Xn = x)

= Px(T1 <∞).

This concludes the proof.
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2.5 Renewal property of the visit times

Proposition 2.8. Let x, y ∈ S be such that x is recurrent and Py(Hx < ∞) = 1. Under

Pµ, the inter-arrival times (after the first visit of x) T2, T3, . . . at x are iid with law given

by

∀t ∈ N Pµ (Ti = t) = Px (Hx = t) .

for every i ≥ 2.

Remark 2.9. We emphasize that the lemma concerns the inter-visit times Ti starting at i = 2.

Indeed, the time T1 corresponds to the time needed to reach x from y, while T2, T3, · · · represent
the successive times to reach x from x. Therefore, in general, the distribution of T1 is not the

same as the following times if y ̸= x. However, if y = x, we have T1, T2, · · · iid under Px.

Proof. We prove by induction on i that for every i ≥ 1 we have Pµ(T1, . . . , Ti <∞) = 1, and

∀f2, . . . , fi : N→ R bounded Eµ(f2(T2) · · · fi(Ti)) = Ex(f2(Hx)) · · ·Ex(fi(Hx)).

The statement holds trivially for i = 1 (the equation above is an empty statement in this

case). Let i ≥ 1 and assume that the statement holds for i. One can check that the random

time T = T1 + · · · + Ti is a stopping time. Furthermore we have Pµ(T < ∞, XT = x) = 1

(by the induction hypothesis). By the strong Markov property, for every f2, . . . , fi+1 : N → R
bounded, we have

Eµ (f2(T2) · · · fi+1(Ti+1)) = Eµ (f2(T2) · · · fi+1(Ti+1)|T <∞, XT = x)

(SMP)
= Eµ (f2(T2) · · · fi(Ti))Ex (fi+1(min{n ≥ 1 : Xn = x}))

= Ex(f2(Hx)) · · ·Ex(fi+1(Hx)),

where we use the induction hypothesis in the last line.
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Chapter 3

Classification of states

Setup:

• S finite or countable set, equipped with the sigma algebra P(S).

• P transition probability.

• (Ω,F , (Pµ)µ distribution on S) probability spaces.

• X = (Xn)n≥0 random variables such that for every distribution µ

X ∼ MC(µ, P ) under Pµ.

Goals:

• Notion of recurrence/transience: link with visit times.

• Decomposition of the state spaces into classes gathering sites with similar properties.

3.1 Recurrence/Transience

Definition 3.1. Let x ∈ S, we say that x is:

• recurrent if Px(Hx <∞) = 1.

• transient if Px(Hx <∞) < 1.

23
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Notation: For x ∈ S let

Vx =
∑
n≥1

1Xn=x

denote the total number of visits of x by the chain after the first step.

Theorem 3.1. (Dichotomy Theorem) Let x ∈ S.

• If x is recurrent, then Vx = +∞ Px-a.s..

• If x is transient, then Ex (Vx) <∞.

Remark 3.2. The theorem excludes the case Px (Vx <∞) > 0 and Ex (Vx) = +∞.

Proof. Let x ∈ S, and let T1, T2 . . . be the inter-visit times at x. For every i, by definition we

have Ti <∞ if and only if Vx ≥ i. Hence, by Proposition 2.7 we have

∀i ≥ 0 Px(Vx ≥ i) = Px(Ti <∞) = ρix, (3.1)

where ρx := Px(Hx <∞).

If x is recurrent (i.e. ρx = 1), by continuity of the measure, we get

Px(Vx =∞) = lim
i→∞

Px(Vx ≥ i) = 1.

Now, let us assume that x is transient, i.e. ρx < 1. Equation (3.1) implies that 1 + Vx is a

geometric random variable with parameter 1− ρx > 0, and its expectation is

Ex (Vx) =
ρx

1− ρx
<∞.

Corollary 3.3. Let x ∈ S be transient. Then for every distribution µ on S, we have

Eµ(Vx) <∞.

Proof. We assume that Pµ(Hx <∞) > 0 (the result is trivial if Pµ(Hx <∞) = 0 because this

implies Eµ(Vx) = 0). Let Ṽx =
∑

n≥0 1Xn=x be the total number of visits of x (including the

first step). By the strong Markov property, we have

Eµ(Vx) = Eµ(Vx1Hx<∞) = Eµ(Vx |Hx <∞)Pµ(Hx <∞)

SMP
= Ex(Ṽx)Pµ(Hx <∞)

= (1 + Ex(Vx))Pµ(Hx <∞) <∞.
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3.2 Positive/Null Recurrence

Notation: For x ∈ S, write mx = Ex(Hx).

Definition 3.2. Let x ∈ S be a recurrent state. We say that x is:

• positive recurrent if mx <∞,

• null recurrent if mx = +∞.

The terminology positive/null recurrent is explained in the following section: we will see

that the positive recurrent states are the ones which are visited a “positive density” of times,

while null recurrent states are visited with a “null density” of times. See the discussion below

Theorem 3.4 for more details.

3.3 Density of visits

Notation: For x ∈ S and n ≥ 0, let

V (n)
x =

n∑
k=1

1Xk=x

denote the number of visits to x up to time n. Given some distribution µ, The ratio 1
n
Eµ(V

(n)
x )

can be interpreted as the average density of time that the chain spends at x before time n.

Theorem 3.4. (Density of visits) Let µ be a distribution on S and let x ∈ S be such that

Pµ(Hx <∞) = 1. Then

lim
n→∞

Eµ(V
(n)
x )

n
=

1

mx

.

This theorem can be interpreted as follows:

“In expectation, the density of time spent by the chain at x is 1
mx

.”

If x is transient, or null recurrent (mx =∞), this density is null. If y is positive recurrent, this

density is positive.
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Remark 3.5. Notice that for x, y ∈ S and n ≥ 1

Ey(V
(n)
x ) =

n∑
k=1

Ey(1Xk=x) =
n∑
k=1

p(k)yx .

Therefore the theorem above applied to µ = δy implies

lim
n→∞

1

n

n∑
k=1

p(k)yx =
1

mx

.

Proof. Case 1: x transient. By Corollary 3.3, we have Eµ(Vx) <∞. Therefore

Eµ(V
(n)
x )

n
≤ Eµ (Vx)

n
→ 0.

Case 2: x recurrent. By Proposition 2.8, we know that the inter-visit times T2, T3 . . . at x are

i.i.d. under Pµ and fulfill Eµ(Ti) = Ex (Hx) = mx. Then we can use the Law of Large Numbers

and Pµ (T1 <∞) = 1. We find Pµ-a.s.,

lim
i→∞

T1 + . . .+ Ti
i

= mx.

Note that this includes the case of mx =∞, by the following truncation argument: if mx =∞,

consider K > 0. By the law of large numbers, Pµ-almost surely,

lim inf
n→∞

T2 + . . .+ Tn
n

≥ lim
n→∞

(T2 ∧K) + . . .+ (Tn ∧K)

n
= Eµ(T2 ∧K).

By monotone convergence, we can let K tend to infinity, and we obtain

lim
n→∞

T2 + . . .+ Tn
n

=∞

Pµ-almost surely.

Now we write Nn = V
(n)
x (the number of visits to x at time n). Following directly from the

definition of Nn we have that for any n > 0 that

T1 + . . .+ TNn ≤ n < T1 + . . .+ TNn+1.

Hence, for every n > 0, on the event {Nn > 0}, we have

Nn

T1 + . . . TNn+1

<
V

(n)
x

n
≤ Nn

T1 + . . .+ TNn

.

The upper and lower bounds each converge to 1
mx

almost surely. Hence, we can conclude that

Eµ

(
V

(n)
x

n

)
→ 1

mx
by the Dominated Convergence Theorem (using the domination

V
(n)
y

n
≤ 1).
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3.4 Communication Classes

Here we will see P as a weighted oriented graph.

Definition 3.3. Let x, y ∈ S. We say that y can be reached from x if there exists an n ≥ 0

such that p
(n)
xy > 0 and we write x→ y. Furthermore, we say that x and y communicate if

y → x and x→ y, and we write x↔ y.

Remark 3.6. (Probabilistic interpretation)

x→ y ⇐⇒ ∃n ≥ 0 Px(Xn = y) > 0 ⇐⇒ Px(∃n ≥ 0 Xn = y) > 0.

Proposition 3.7. ↔ is an equivalence relation on S.

Proof. Follows from Chapman-Kolmogorov equations.

Definition 3.4. The equivalence classes of ↔ are called communication classes of P .

If P has a single unique communication class, we say that P is irreducible.

A communication class C is said to be closed if for every x, y ∈ S

x ∈ C, x→ y =⇒ y ∈ C.

Proposition 3.8. Let C be a communication class.

C is closed ⇐⇒ ∀x ∈ C Px(∀n ≥ 0 Xn ∈ C) = 1.

”If one starts in C, one never leaves.”

Proof.

(C is not closed) ⇐⇒ ∃x ∈ C ∃y ∈ S \ C x→ y

⇐⇒ ∃x ∈ C ∃y ∈ S \ C Px(∃n ≥ 0 Xn = y) > 0

⇐⇒ ∃x ∈ C Px(∃n ≥ 0 ∃y ∈ S \ C Xn = y) > 0

⇐⇒ ∃x ∈ C Px(∃n ≥ 0 Xn ∈ S \ C) > 0

⇐⇒ ∃x ∈ C Px(∀n ≥ 0 Xn \ C) < 1.
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3.5 Closure property of recurrence

Theorem 3.9. Let x, y ∈ S such that x → y. If x is recurrent then y is recurrent and

Px (Hy <∞) = Py (Hx <∞) = 1. In particular x↔ y.

Proof. We want to use that every time the chain visits x, it has a non-zero probability to visit y

after that, visiting x infinitely often should ensure that y is also visited infinitely often. Assume

y ̸= x and x recurrent. Let z1, . . . , zk−1 be distinct elements of S, not equal to x or y such that

pxz1 · · · pzk−1y > 0. Then we have

0 = Px (Hx =∞) ≥ Px (X1 = z1, . . . , Xk−1 = zk−1, Xk = y,∀n > 0 Xk+n ̸= x)

(MP)
= Px (X1 = z1, . . . , Xk = y)︸ ︷︷ ︸

>0

Py (∀n > 0 Xn ̸= x)︸ ︷︷ ︸
Py(Hx=∞)

.

Thus Py (Hx <∞) = 1. Next, we have to show that y is recurrent. Choose m,n such that

p
(n)
xy , p

(m)
yx > 0, we have

Ey (Vy) =
∑
k>0

p(k)yy ≥
∑
k>0

p(m+k+n)
yy

(CK)

≥ p(m)
yx︸︷︷︸
>0

(∑
k>0

p(k)xx

)
︸ ︷︷ ︸

=∞

p(n)xy︸︷︷︸
>0

.

Hence, y is recurrent. To show that Px (Hy <∞) = 1, use the same argument as above, but

with the roles of x and y swapped (y → x, y recurrent), as before.

Remark 3.10. Let x ∈ S recurrent and x ̸= y then

x→ y ⇐⇒ Px (Hy <∞) > 0 ⇐⇒ Px (Hy <∞) = 1.

Corollary 3.11. A recurrent class is always closed.

Proof. C recurrent, x ∈ C, if x → y then we must have y → x (otherwise x wouldn’t be

recurrent), therefore y ∈ C.

The theorem above gives us a simple criterion for transience:

Corollary 3.12. If x→ y but y ↛ x, then x is transient.
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3.6 Classification of states

Theorem 3.13. (Classification of states) Let C ⊂ S be a communication class. Then

exactly one of the following holds:

(i) For all x ∈ C, x is transient.

(ii) For all x ∈ C, x is null recurrent.

(iii) For all x ∈ C, x is positive recurrent.

Proof. Fix x, y ∈ S with x↔ y. We prove that y is of the same type (transient, null recurrent

or positive recurrent) as x.

If x is transient then y is also transient by Theorem 3.9.

Let us now assume that x positive recurrent. Fix k ≥ 0 with p
(k)
xy > 0. By Chapman-

Kolmogorov, we have for all j > 0

p(k+j)xy ≥ p(j)xxp
(k)
xy .

Thus

1

n

n∑
i=1

p(i)xy︸ ︷︷ ︸
→ 1

my

≥

(
1

n

n−k∑
j=1

p(j)xx

)
︸ ︷︷ ︸

→ 1
mx

p(k)xy︸︷︷︸
>0

.

Therefore, 1
my

> 0 and y is positive recurrent.

Definition 3.5. A communication class C ⊂ S is said to be transient (resp. recurrent,

null recurrent, positive recurrent) if all its elements x ∈ C are transient (resp. recurrent,

null recurrent, positive recurrent).

A consequence of the theorem above is that we can partition the state space S as

S = T ∪R1 ∪R2 ∪ · · · ,

where T is the set of transient states (T is equal to the union of all the transient classes), and

R1, R2, . . . , are the recurrent classes.

We can classify the behavior of the chain by differentiating if Xn starts in some Rk and if

Xn starts in T . In the former case the chain remains in Rk forever. If Xn starts in T , either it

remains in T forever, or at some point it moves into an Rk and remains there forever.
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Definition 3.6. When P is irreducible, all the sites x ∈ S are in the same class, and we

simply say that P is transient (resp. recurrent, null recurrent, positive recurrent) in the

corresponding cases.

3.7 Finite classes

Proposition 3.14. Let R be a recurrent class, if R is finite, then R is positive recurrent.

In particular, if S is finite, then every recurrent state is positive recurrent.

Proof. Fix x ∈ R, since R is closed we have for every n > 0

1 = Px (Xn ∈ R) =
∑
y∈R

p(n)xy .

Hence,

1 =
∑
y∈R

1

n

n∑
k=1

p(k)xy →
∑
y∈R

1

my

.

Thus, there must be a y ∈ R such that my < ∞, implying that the entire class is positive

recurrent.

3.8 Finite state space

Proposition 3.15. If S is finite, then there exists a recurrent state x ∈ S.

Proof. Almost surely, we have∑
x∈S

Vx =
∑
x∈S

∑
n≥0

1Xn=x =
∑
n≥0

∑
x∈S

1Xn=x =
∑
n≥0

1 =∞.

Fix some distribution µ. By taking the expectation above, and using Fubini Theorem (for

nonnegative random variables), we get∑
x∈S

Eµ (Vx) = Eµ

(∑
x∈S

Vx

)
=∞.

Thus we know there exists x ∈ S such that Eµ (Vx) =∞. Therefore by Corollary 3.3, the state

x must be recurrent.



Chapter 4

Convergence to equilibrium

Framework: S finite or countable set, P = (pxy)x,y∈S transition probability, (Ω, F, (Px)x∈S)

probability spaces, X = (Xn)n≥0 ∼ MC(δx, P ) under Px, Pµ =
∑
µxPx.

Goals:

• Definition stationary/reversible distributions.

• Criteria for existence of stationary distributions.

• Behavior of Xn for n large?

4.1 Stationary Distributions

Notation: Let µ be a distribution on S. We define the distribution µP by setting

∀y ∈ S (µP )y =
∑
x∈S

µxpxy.

(One can check that that it indeed defines a distribution.)

Write µn for the law of Xn under Pµ. It follows from the simple Markov property that the

sequence (µn) satisfies the induction{
µ0 = µ,

µn+1 = µnP for all n ≥ 0.

For n large, we expect µn to be close to a fixed point of the map λ→ λP . Such a distribution π

is invariant under the dynamics of the process, and the relationship to the long-time behavior

of the Markov Chain will be rigorously analyzed in this chapter.
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Definition 4.1. Let π be a distribution on S, we say that π is stationary (for P ) if

π = πP.

When S is finite and if we see P as a matrix, then a stationary distribution corresponds to

a left eigenvector π of P for the eigenvalue 1.

Probabilistic interpretation If π is a stationary distribution, then for all n ≥ 0

Pπ[Xn = x] = πx. .

4.2 Reversibility

Definition 4.2. A distribution π on S is said to be reversible (for P ) if for any x, y ∈ S

πx pxy = πy pyx.

The equation above is equivalent to

Pπ[X0 = x,X1 = y] = Pπ[X0 = y,X1 = x].

Namely, the starting distribution π is reversible if under Pπ, the probability of starting at y

and going to x is equal to the probability of starting at x and going to y. More generally,

one can prove (exercise) by induction that π is reversible if and only if for every n ≥ 1 and

x0, . . . , xn ∈ S

Pπ [X0 = x0, . . . , Xn = xn] = Pπ [X0 = xn, . . . , Xn = x0] .

“The probability of a trajectory is equal to its time-reversal.”

Proposition 4.1. Let π be a distribution on S. If π is reversible, then π is stationary.

Proof. Let π be a reversible distribution. For every y ∈ S, we have

(πP )y =
∑
x∈S

πxpxy
reversibility

=
∑
x∈S

πypyx = πy
∑
x∈S

pyx = πy.
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4.3 Stationary Distributions for Irreducible Chains

Recall that mx = Ex[Hx], where Hx is the hitting time of x.

Theorem 4.2. Assume that P is irreducible.

• If P is transient or null recurrent, then there is no stationary distribution.

• If P is positive recurrent, then there exists a unique stationary distribution given by

πx =
1

mx

.

Proof. Case 1: P transient. Assume for contradiction that there exists a stationary distribu-

tion π. For every x ∈ S and every n ≥ 0 we have

πx = Pπ[Xn = x].

Write Lx for the last visit time of x. The dichotomy theorem together with the strong Markov

property imply that Lx is finite Pπ-almost surely. Therefore

Pπ[Xn = x] ≤ Pπ[Lx ≥ n]
n→∞−−−→ 0.

Therefore, πx = 0 for every x ∈ S, this is a contradiction to
∑

x∈S πx = 1.

Case 2: P null recurrent. Assume for contradiction that there exists a stationary distribu-

tion π. As in the transient case we show πx = 0 for every x. For every x ∈ S and for all n > 0,

we have

πx =
1

n

n∑
k=1

Pπ [Xk = x] =
Eπ[V

(n)
x ]

n
=
∑
y∈S

πy
Ey[V

(n)
x ]

n
. (4.1)

Since Py[Hx <∞] = 1 for every y ∈ S, by the density of visit theorem, we have

lim
n→∞

Ey[V
(n)
x ]

n
=

1

mx

= 0.

By the Dominated Convergence Theorem (using the domination Ey [V
(n)
x ]

n
≤ 1), we can take

the limit n→∞ in (4.1) to conclude πx =
1
mx

= 0.

Case 3: P positive recurrent. The same argument as in the null recurrent case shows that

there is a unique candidate for a stationary distribution, given by

πx =
1

mx

.
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To conclude, one needs to prove that this measure is indeed a stationary distribution.

First, let us fix k ≥ 1. By Theorem 3.4 (density of visits) we have for every y ∈ S

1

my

= lim
n→∞

1

n

n∑
j=1

p(j)yy

(CK)
= lim

n→∞

∑
x∈S

(
1

n

n∑
j=k

p(j−k)yx

)
p(k)xy

(Fatou)

≥
∑
x∈S

lim inf
n→∞

(
1

n

n∑
j=k

p(j−k)yx

)
p(k)xy

=
∑
x∈S

1

mx

· p(k)xy .

Analogously, for a fixed x ∈ S, we have

1 = lim
n→∞

1

n

n∑
j=1

Px [Xj ∈ S] = lim
n→∞

∑
y∈S

1

n

n∑
j=1

Px [Xj = y]
(Fatou)

≥
∑
y∈S

1

my

.

We now prove that the two inequalities above are actually equalities. First, we sum the first

inequality over y and get ∑
y∈S

1

my

≥
∑
y∈S

(∑
x∈S

1

mx

p(k)xy

)
=
∑
x∈S

1

mx

.

Thus the inequality must be an equality. Namely, for every k > 0 and for all y ∈ S, we have

1

my

=
∑
x∈S

1

mx

p(k)xy . (4.2)

We can use this to show that the second inequality is actually an equality. Fix y ∈ S and note

that 1
my

> 0 by positive recurrence. We have

1

my

= lim
n→∞

1

n

n∑
k=1

(∑
x∈S

1

mx

p(k)xy

)

= lim
n→∞

∑
x∈S

1

mx

(
1

n

n∑
k=1

p(k)xy

)
(DCT)
=

∑
x∈S

1

mx

1

my

.

Hence, πx = 1
mx

defines a distribution, which is stationary (this follows from Equation (4.2)

with k = 1).
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4.4 Periodicity

Definition 4.3. Let x ∈ S. The period of x is defined by

dx = gcd{n > 0 : p(n)xx > 0} .

By convention gcd(∅) =∞.

The following proposition asserts that the period is constant on the communication classes.

Proposition 4.3. Let x, y ∈ S. If x↔ y, then dx = dy.

Proof. Let x ̸= y. We prove that dy|dx.
Let us fix k, ℓ ≥ 0 such that p

(k)
yx , p

(ℓ)
xy > 0. Since p

(k+ℓ)
yy ≥ p

(k)
yx p

(ℓ)
xy > 0 we have that dy|k + ℓ.

Now we show that dy is a common divisor of {n > 0 : p
(n)
xx > 0}, this will imply our claim. For

every n > 0 satisfying p
(n)
xx > 0, we have

p(k+ℓ+n)yy ≥ p(k)yx p
(n)
xx p

(ℓ)
xy > 0,

hence dy|k + ℓ+ n. Since dy|k + ℓ, we also have dy|n.

Consequence: If P is irreducible, we have

∀x, y ∈ S dx = dy.

Definition 4.4. We say that P is aperiodic if for every x ∈ S

dx = 1.

Proposition 4.4. Let x be in S. We have dx = 1 if and only if there is an n0 ≥ 1 such

that for every n ≥ n0 we have that p
(n)
xx > 0.

We use the following lemma from number theory.

Lemma 4.5. Let A ⊂ N \ {0} be stable under addition (i.e. x, y ∈ A =⇒ x+ y ∈ A). Then

gcd(A) = 1 ⇐⇒ ∃n0 ∈ N : {n ∈ N : n ≥ n0} ⊂ A.
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Proof.

⇐ Follows from the fact that gcd(n0, n0 + 1) = 1.

⇒ Assume gcd(A) = 1. Let a ∈ A be arbitrary and a =
∏k

i=1 p
αi
i be its prime factorization.

Since gcd(A) = 1, one can find b1, . . . , bk ∈ A such that for all i pi ∤ bi. This implies

gcd(a, b1, . . . , bk) = 1.

Write d = gcd(b1, . . . , bk). By Bezout’s Theorem, we can pick u1, . . . , uk ∈ Z such that

u1b1 + . . .+ ukbk = d.

Now, choose an integer λ large enough such that ui + λa ≥ 0 for every i and define

b = (u1 + λa)b1 + . . .+ (uk + λa)bk = d+ λ(b1 + . . .+ bk)a.

The first expression shows that b ∈ A, and the second implies that gcd(a, b) = gcd(a, d) = 1.

To summarize, we found a, b ∈ A such that gcd(a, b) = 1.

Without loss of generality, we may assume a < b. Since gcd(a, b) = 1, the set B =

{b, 2b, . . . , ab} covers all of the residue classes modulo a. Since a < b, this implies that B +

{ka, k ∈ N} includes every number z ≥ ab. This concludes the proof by choosing n0 = ab.

Proof of Proposition 4.4. The set Ax = {n > 0 : p
(n)
xx > 0} under addition, because p

(m+n)
xx ≥

p
(m)
xx p

(n)
xx for every m,n > 0. The proof follows by applying the lemma to A = Ax.

4.5 Product Chain

Our goal in the next two sections is to define two Markov Chains X a MC(µ, P ) and X̃ a

MC(ν, P ) on the same probability space such that Xn = X̃n for n large.

To achieve this, we first consider two independent chains X and Y . We then show that the

chains meet almost surely (under some assumptions on P ) at some random time T . Then we

ask that the chains follow the same trajectory for t > T .

Notation: Let µ, ν be two distributions on S, we write µ⊗ν for the distribution on S2, defined

by

∀(x, y) ∈ S2 (µ⊗ ν)(x,y) = µxνy.

Proposition 4.6. Let X ∼ MC(µ, P ) and Y ∼ MC(ν, P ) be two independent Markov

Chains. The sequence of random variables (X, Y ) := ((Xn, Yn))n≥0 is a Markov Chain on
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T

S Y

X

X̃

Figure 4.1: A coupling of two simple random walks started from 6 and 0

S2 with initial distribution µ⊗ ν and transition probability P defined by

pω,ω′ = pxx′pyy′ .

Remark 4.7. To see that P = (pw,w′)w,w′∈S2 is a transition probability, calculate∑
w′∈S

pww′ =
∑
x′,y′∈S

pxx′pyy′ = 1.

Proposition 4.8. If P is irreducible and aperiodic then P is irreducible and aperiodic.

Remark 4.9. Aperiodic is important. Indeed P irreducible does not imply that P is irreducible

in general. For example, consider S = {1, 2} and p12 = p21 = 1. In this case, P is irreducible,

but P is not irreducible.

Proof. Let w = (x, y) and w′ = (x′, y′) ∈ S2. By irreducibility we can choose k, ℓ ≥ 0 such that

p
(k)
xx′ , p

(ℓ)
yy′ > 0. Then for every n ≥ max(k, ℓ) we have

p
(n)
ww′ = p

(n)
xx′p

(n)
yy′ ≥ p

(k)
xx′p

(n−k)
x′x′ p

(ℓ)
yy′p

(n−ℓ)
y′y′ > 0.

This holds as the two terms p
(n−k)
x′x′ and p

(n−ℓ)
y′y′ are strictly positive for n large enough.

Proposition 4.10. If π is stationary for P then π ⊗ π is stationary for P .
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Proof. For every (y, y′) ∈ S2 we have

πyπy′ =
∑
x∈S

πxpxy
∑
x′∈S

πx′px′y′ =
∑

(x,x′)∈S2

πxπx′pxypx′y′ .

4.6 Coupling Markov Chains

In this whole section, we fix X ∼ MC(µ, P ) and Y ∼ MC(ν, P ) two independent Markov

Chains on some probability space (Ω,F ,P).

Definition 4.5. We define the stopping time (for the product chain (X, Y ))

T = min{n ≥ 0 : Xn = Yn}.

Remark 4.11. To see that T is indeed a stopping time, notice that T = HA with A = {(x, y) ∈
S2 : x = y}.

Proposition 4.12. For every n ≥ 0

∑
x∈S

|P [Xn = x]− P [Yn = x] | ≤ 2P[T > n].

Lemma 4.13. The sequence of random variable X̃ = (X̃n)n≥0 defined by

X̃n =

{
Yn for n < T

Xn for n ≥ T
.

is a Markov Chain on S with initial distribution ν and transition probability P .

Proof. Define Ỹ by

Ỹn =

{
Xn for n < T

Yn for n ≥ T
.

Let n ≥ 0. Writing X[n] for (X1, . . . , Xn), we show that (X[n], Y[n]) and (Ỹ[n], X̃[n]) have the

same distribution. This implies that X̃[n] has the same distribution as Y[n], which concludes the

proof. To achieve this, we fix x = (x0, . . . , xn) and y = (y0, . . . , yn) ∈ Sn, and prove that

P[X[n] = x, Y[n] = y] = P[Ỹ[n] = x, X̃[n] = y]. (4.3)
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If xi ̸= yi for every i ≤ n, then the trajectories x and y do not intersect and (4.3) is a direct

consequence of the definition of (X̃, Ỹ ). Now, we assume that xi = yi for some index i ≤ n and

we prove that (4.3) also holds in this case. Define

t = min{i : xi = yi}.

In particular we have xt = yt. If X[n] = x, Y[n] = y then T = t. Furthermore, by using xt = yt
and the independence between X and Y , we find

P[X[n] = x, Y[n] = y] = P[X[n] = (x0, . . . , xt, yt+1, . . . , yn), Y[n] = (y0, . . . , yt, xt+1, . . . , xn)]

= P[Ỹ[n] = x, X̃[n] = y].

which concludes the proof.

Proof of Proposition 4.12. We use the coupling between X and X̃ to conclude the proof. For

every n ≥ 0∑
x∈S

|P [Xn = x]− [Yn = x]| =
∑
x∈S

∣∣∣P [Xn = x]− P
[
X̃n = x

]∣∣∣
=
∑
x∈S

∣∣∣P [Xn = x, T ≤ n] + P [Xn = x, T > n]

− P
[
X̃n = x, T ≤ n

]
− P

[
X̃n = x, T > n

] ∣∣∣
≤
∑
x∈S

P [Xn = x, T > n] + P
[
X̃n = x, T > n

]
= 2P [T > n] .

4.7 Convergence to equilibrium

Theorem 4.14. Assume that P is irreducible, aperiodic, and admits a stationary distribu-

tion π. Then for every distribution µ on S and x ∈ S

lim
n→∞

Pµ [Xn = x] = πx.

Equivalently: Under Pµ : Xn
(law)→ X∞ where X∞ ∼ π.

Equivalently: For all f : S → R bounded: limn→∞ Eµ [f(Xn)] =
∫
S
fdπ.
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Proof. Consider the product chain (Xn, Yn)n≥0 as before, where X has initial distribution µ

and Y starts with the invariant distribution π .

By Proposition 4.8, the product transition probability P is irreducible. Furthermore, by

Proposition 4.10, it admits a stationary distribution. By Theorem 4.2, this implies that P

is positive recurrent. Fix an arbitrary vertex a ∈ S and consider the hitting time H(a,a) for

the product chain. Since P is irreducible and recurrent, Theorem (3.9) (closure property of

recurrence) implies that the hitting time H(a,a) is finite almost surely. Therefore, the stopping

time T = min{n ≥ 0 : Xn = Yn} is also finite almost surely, because T ≤ H(a,a). By applying

Proposition 4.12, we have that for every x ∈ S

|P [Xn = x]− πx| = |P [Xn = x]− P [Yn = x]| ≤ 2P [T > n]
n→∞−−−→ 0.

4.8 Null recurrent and transient cases

Theorem 4.15. Assume that P is irreducible, aperiodic, and null recurrent or transient.

Then for every distribution µ and every x ∈ S

lim
n→∞

Pµ [Xn = x] = 0.

Lemma 4.16. Assume that P is irreducible and recurrent. For every µ distribution on S, any

i ≥ 0, and every x ∈ S

lim
n→∞

|Pµ [Xn = x]−Pµ [Xn+i = x] | = 0

Proof. Fix i ≥ 0 and consider the distribution µi = µP i (i.e. µi is the law of Xi under Pµ).

Let X ∼ MC(µ) and Y ∼ MC(µi) be two independent Markov Chains. For each n ≥ 0, the

distribution of Yn is µiP
n = µP i+n (by Chapman Kolmogorov equations), therefore

∀x ∈ S P[Yn = x] = P[Xn+i = x].

The stopping time T = min{n ≥ 0 : Xn = Yn} is finite almost surely as P is irreducible and

recurrent. By Proposition 4.12, we have limn→∞ |P[Xn = x]− P[Yn = x] = 0|, i.e.

lim
n→∞

|P [Xn = x]− P [Xn+i = x]| = 0.
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Proof of Theorem 4.15. We distinguish two cases, depending whether P is transient or recur-

rent.

Case 1: Assume P transient. Let X, Y ∼ MC(µ, P ) independent. Fix x ∈ S, since (x, x)

is transient, the last visit L = max{n ≥ 0 : (Xn, Yn) = (x, x)} is finite almost surely (by the

Dichotomy Theorem). Hence,

P[Xn = x]2 = P [Xn = x, Yn = x] ≤ P [L ≥ n]
n→∞−−−→ 0.

Case 2: Assume P is null recurrent. Fix x ∈ S and ε > 0. Since x is a null recurrent state, by

Theorem 3.4 (density of visits), we can choose k such that

1

k

k−1∑
i=0

p(i)xx < ϵ.

For every n ≥ 0, define the stopping time H = min{j ≥ n : Xj = x} ( representing the first hit

time of x after time n). Since the chain does not visit x between time n and time H, we have

1

k

k∑
i=1

Pµ [Xn+i = x] ≤ 1

k

k−1∑
i=0

Pµ [XH+i = x]
(StMP)
=

1

k

k−1∑
i=0

Px [Xi = x] ≤ ε.

In order to conclude, we use Lemma 4.16: for n large Pµ [Xn = x] is closed to the average
1
k

∑k
i=1Pµ [Xn+i = x], which is small by the equation above. More precisely, for every n ≥ 0 ,

we have

Pµ [Xn = x] =
1

k

k∑
i=1

Pµ [Xn = x]

≤ 1

k

k∑
i=1

|Pµ [Xn = x]−Pµ [Xn+i = x]|︸ ︷︷ ︸
Lemma 4.16−−−−−−−→

n→∞
0

+
1

k

k∑
i=1

Pµ [Xn+i = x]︸ ︷︷ ︸
≤ε

.

Since P is irreducible and recurrent, Lemma 4.16 concludes that

lim sup
n→∞

Pµ [Xn = x] ≤ ϵ.
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4.9 Monte-Carlo Markov Chain: Hardcore model

Reference: see Chapter 7 of [2].

We consider a 8x8 square grid, i.e. the graph G = (V,E) where V = {1, . . . , 8}2 and

E = {{x, y} ⊂ V : ∥x − y∥1 = 1}. In the hardcore model, particles are placed randomly on

the vertices in such a way that

• there is at most one particle on each vertex; and

• no two neighbours are occupied by a particle.

Formally, a configuration is an element ξ ∈ {0, 1}V . Such a configuration associates to each

vertex v ∈ V a value ξ(v) = 0 or ξ(v) = 1, where ξ(v) = 1 is interpreted as the presence of

a particle at v. Such a configuration is called admissible if min(ξ(v), ξ(w)) = 0 for every edge

{v, w} ∈ E.

Question: How to simulate Y , a uniform random variable in

S = {ξ ∈ {0, 1}V : ξ is admissible}?

We will construct a Markov chain on S with stationary distribution π, the uniform distri-

bution on S. We start on a fixed admissible configuration X0 = η ∈ S. For every n ≥ 0, we

define Xn+1 from Xn as follows:

• Pick a vertex v uniformly at random in V .

• If a neighbour of v is occupied in Xn, we do nothing and set Xn+1 = Xn.

• If none of the neighbours of v is occupied in Xn, then we set Xn+1(v) to be the result of

a fair coin, and we leave all the other values unchanged: we set Xn+1(w) = Xn(w), for

all w ̸= v.

Proposition 4.17. For every ξ ∈ S we have

lim
n→∞

P[Xn = ξ] =
1

|S|
.
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Proof. The chain defined above is a Markov Chain with transition probability P defined by

pξ,ψ =


1

2|V | if ψ and ξ differ exactly at one vertex,

1− k
2|V | if ξ = ψ,

0 otherwise.

where k = k(ξ) is the number of admissible configurations ψ that differ from ξ exactly at one

vertex. The definition of pξ,ψ is symmetric in ξ, ψ ∈ S, therefore pξ,ψ = pψ,ξ, which implies that

∀ξ, ψ ∈ S 1

|S|
pξ,ψ =

1

|S|
pψ,ξ.

This implies that the uniform distribution is reversible, and therefore stationary.

Furthermore, the chain is irreducible (one can check that 0↔ ξ for all ξ ∈ S) and aperiodic

(because pξ,ξ > 0 for every ξ). See Exercise 6.5 for more details. The proof follows by applying

Theorem 4.14.
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Chapter 5

Renewal Processes

Framework: (Ω,F ,P) probability space. In the whole chapter, we fix

T1, T2, . . . i.i.d. random variables on R+

satisfying P [T1 = 0] < 1. We write

µ = E [T1] ∈ (0,∞] and F (t) = P [T1 ≤ t]

for the expectation and the distribution function of T1, respectively.

5.1 Definition

Definition 5.1. Let i ≥ 1. The random variable Ti is called the i-th inter-arrival time,

and we define the i-th arrival time (or i-th renewal time) as

Si = T1 + · · ·+ Ti.

Definition 5.2. The continuous time stochastic process (Nt)t≥0 defined by

∀t ≥ 0 Nt =
∞∑
k=1

1Sk≤t

is called the renewal process with arrival distribution F .

In words, Nt counts the number of renewal times in the interval [0, t].

45
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Examples:

(i) T1 = 1 a.s. (”deterministic case”)

(ii) T1 ∼ U(0, 1).

5.2 Exponential inter-arrival times

If the inter-arrival times are exponential random variables with parameter λ, then the renewal

process N is called a Poisson Process with parameter λ. Such process will be analyzed in more

depth in Chapter ??. The name comes from the distribution of Nt, which is a Poisson random

variable, as stated in the following proposition.

0 1 2 3 4 5

0

1

2

3

4

Proposition 5.1. Fix λ > 0 and assume that

T1 ∼ Exp(λ)

(i.e. F (t) = 1− eλt for t ≥ 0). In this case, for every fixed t ≥ 0, we have

Nt ∼ Pois(λt).

Proof. We prove by induction on n, that

∀t ≥ 0 P[Nt = n] =
(λt)n

n!
e−λt (5.1)
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For n = 0, we have Nt = 0 if there is no renewal before time t, therefore,

P[Nt = 0] = P[T1 ≥ t] = e−λt.

Let n ≥ 0 and assume that (5.1) holds. Fix t ≥ 0. There are n + 1 renewal before time t iff

T1 < t and there are exactly n renewal times between T1 and t. By conditioning on T1, and

using independence, we obtain

P[Nt = n+ 1] = P[T1 < t, T1 + · · ·+ Tn+1 ≤ t, T1 + · · ·+ Tn+2 > t]

=

∫ ∞

0

P[s < t, s+ T2 + · · ·+ Tn+1 ≤ t, s+ T2 + · · ·+ Tn+2 > t]λe−λsds

=

∫ t

0

P[T2 + · · ·+ Tn+1 ≤ t− s, T2 + · · ·+ Tn+2 > t− s]λe−λsds

=

∫ t

0

P[Nt−s = n]λe−λsds

By the induction hypothesis, we obtain

P[Nt = n+ 1] =

∫ t

0

(λ(t− s))n

n!
λe−λtds =

[
−(λ(t− s))n+1

(n+ 1)!

]t
0

e−λtds =
(λt)n+1

(n+ 1)!
e−λt.

5.3 Bernoulli inter-arrival times

In this section, we give another example where the law of Nt can be computed explicitly.

Proposition 5.2. Fix α > 0 and 0 < β ≤ 1 and assume that

T1 =

{
α with probability β

0 with probability 1− β

(i.e. T1
(law)
= αZ, where Z ∼ Ber(β)). In this case, for every fixed t ≥ 0, we have

Nt
(law)
= X0 +

⌊t/α⌋∑
i=1

(1 +Xi).

where the Xi’s are i.i.d. geometric random variables with parameter β.
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Proof. The sequence T1, T2, . . . is a random sequence of numbers taking values in {0, α}. Since
Ti = α with probablity β > 0, we know (by Borel-Cantelli Theorem) that the value α appears

infinitely many times. Define X0 ∈ {0, 1, 2 . . .} to be the numbers of 0’s before the first α, and

for every i ≥ 1, define Xi as the number of 0’s between the i-th and the i + 1-th α. Notice

that X0, X1, . . . is an iid sequence of geometric random variables with parameter β. Indeed, by

independence, for every i ≥ 0 and every k0, . . . , ki we have

P[X0 = k0, . . . , Xi = ki] =
i∏

j=0

P[Tℓj+1 = 0, . . . , Tℓj+kj−1 = 0, Tℓj+kj = α] =
i∏

j=0

(1− β)kjβ.

where we set ℓ0 = 0 and ℓj = k1 + · · ·+ kj for j ≥ 1.

By definition, the number of renewal times before time t is exactly the number of terms

in the sequence (T1, T2, . . .) before we see ⌊t/α⌋ times the value α. Following the definitions

above, we get

Nt = X0 +

⌊t/α⌋∑
i=1

(1 +Xi).

5.4 Basic properties

Lemma 5.3 (Monotonicity). Let (T ′
i )i≥1 be a sequence of iid random variables satisfying

T ′
i ≤ Ti a.s.

Then the renewal process N ′ define by N ′
t =

∑∞
k=1 1T ′

1+···+T ′
k≤t satisfies

N ′
t ≥ Nt a.s.

for every t ≥ 0.

Proof. Let k ≥ 1 and t ≥ 0. If T1 + · · ·+ Tk ≤ t then T ′
1 + · · ·+ T ′

k ≤ t a.s. Therefore,

1T1+···+Tk≤t ≤ 1T ′
1+···+T ′

k≤t a.s.

The results follows by summing the equation above over all k ≥ 1.
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Proposition 5.4 (Basic properties). The renewal process N satisfies the following proper-

ties. Almost surely,

(i) t 7→ Nt is non-decreasing, right continuous, with values in N and

(ii) limt→∞Nt =∞.

Proof.

(i) Write Q+ = Q ∩ (0,∞) for the positive rational numbers. We have

P [T1 > 0] = P
[ ⋃
α∈Q+

{T1 ≥ α}
]
= lim

α→0
α∈Q+

P[T1 ≥ α].

We have ∑
i>0

P [Ti ≥ α] =∞.

Therefore, by the Borel-Cantelli lemma, P [A] = 1, where

A = {ω : Ti(ω) ≥ α for infinitely many i} .

For every ω ∈ A, limn→∞ Sn(ω) =∞, and therefore

t 7→ Nt(ω) =
∑
k≥1

1Sk(ω)≤t

is a non-decreasing function with values in N.

(ii) All the inter-arrival times T1, T2, . . . are finite almost surely. Therefore, all the renewal

times S1, S2, . . . are finite almost surely. When this occurs, we have

lim
t→∞

Nt = lim
t→∞

∑
k≥1

1Sk≤t = +∞.

5.5 Exponential moments
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Proposition 5.5 (Exponential moments). There exists c > 0 such that

∀t ≥ 0 E
[
ecNt

]
≤ e

1+t
c

Proof. As in the proof of Proposition 5.4, we can pick α ∈ (0, 1] such that P [T1 ≥ α] > 0. For

every i > 0, define

T ′
i = α1Ti≥α.

We have T ′
i ≤ Ti a.s. and (T ′

i ) are i.i.d. random variables with

T ′
i =

{
α with probability β

0 with probability 1− β

where β = P [T1 ≥ α] > 0. Define the renewal process N ′ by

N ′
t =

∑
k≥1

1T ′
1+···+T ′

k≤t.

By Proposition 5.2, we have that

N ′
t =

(law)
= X0 +

⌊ t
α
⌋∑

i=1

(1 +Xi),

where (Xi) are geometric random variables with success parameter β. For c > 0 such that

(1− β)ec < 1 we have

E[ec(1+Xi)] = ec
(

β

1− (1− β)ec

)
≤ e

α
c .

Hence, we can choose c > 0 small enough such that E[ec(1+Xi)] ≤ e
α
c . Using this bound and

independence we obtain for all t ≥ 0

E
[
ecN

′
t

]
≤

⌊ t
α
⌋∏

i=0

E
[
ec(1+Xi)

]
≤ e

α
c
(1+ t

α
) = e

α+t
c .

This completes the proof since we chose α ≤ 1.

Remark 5.6. In particular, for every t ≥ 1, we have

E
[
ec

Nt
t

] (Jensen)

≤ E
[
ecNt

] 1
t ≤ e

2
c

and for every k ≥ 1

E

[(
Nt

t

)k]
≤ k!

ck
e

2
c . (5.2)



5.6. LAW OF LARGE NUMBERS 51

5.6 Law of Large Numbers

Theorem 5.7 (Law of Large Numbers). Recall that µ = E [T1]. We have

lim
t→∞

Nt

t
=

1

µ
a.s.

Remark 5.8. If µ =∞, then limt→∞
Nt

t
= 0 a.s.

Proof. By the strong law of large numbers (for non negative random variable), we have

lim
n→∞

Sn+1

n+ 1
= lim

n→∞

Sn
n+ 1

= µ a.s.

Notice that for every t

SNt ≤ t ≤ SNt+1.

Therefore,

SNt

Nt + 1︸ ︷︷ ︸
→µ

≤ t

Nt + 1
<

SNt+1

Nt + 1︸ ︷︷ ︸
→µ

.

Where the convergences are almost sure. Therefore limt→∞
1+Nt

t
= 1

µ
a.s., which implies that

limt→∞
Nt

t
= 1

µ
a.s.

Theorem 5.9 (Central Limit Theorem). Assume that E [T 2
1 ] < ∞. Write µ = E [T1] , σ

2 =

V ar(T1). Then, assuming σ > 0, we have

Nt − t
µ

σ
√

t
µ3

(law)−→
t→∞
N (0, 1)

Proof. See exercises.

5.7 Renewal function
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Definition 5.3. The renewal function is the function m : R+ → R+ defined by

∀t ≥ 0 m(t) = E[Nt].

Remark 5.10. Equation (5.2) applied to k = 1 implies that m(t) <∞ for every t ≥ 0.

Interpretation: The set {S1, S2, . . .} of renewal times defines a set of random points in R+,

and

m(t) = E [Number of points in the interval [0, t]] .

Remark 5.11. For the Poisson process with parameter λ, we know (by Proposition 5.1) that

Nt ∼ Pois(λt). Therefore, the renewal function is linear in this case:

∀t ≥ 0 m(t) = λt.

Proposition 5.12. The renewal function m is non-decreasing, non-negative, and right

continuous.

Proof. Since Nt is non-decreasing in t and non-negative almost surely, the expectation m(t) =

E[Nt] also satisfies these two properties. For the right continuity, observe that almost surely

Nt+s −Nt ↓ 0 as s ↓ 0. Therefore m(t+ s)−m(t)→ 0 by monotone convergence.

5.8 Elementary renewal theorem

Theorem 5.13 (Elementary Renewal Theorem).

lim
t→∞

m(t)

t
=

1

µ
.

Proof. We already have limt→∞
Nt

t
= 1

µ
a.s. (by Theorem 5.7). Furthermore, we have seen that

supt≥1 E
[(

Nt

t

)2]
<∞. Hence Nt

t
is uniformly integrable and

lim
t→∞

m(t)

t
= lim

t→∞
E
[
Nt

t

]
= E

[
lim
t→∞

Nt

t

]
=

1

µ
.



5.9. LATTICE DISTRIBUTIONS 53

5.9 Lattice distributions

Definition 5.4. We say that F is lattice if there exists a > 0 and such that

P [T1 ∈ aZ] = 1. (5.3)

In this case the span of F is defined as the largest a > 0 such that (5.3) holds. Otherwise, we

say that F is non lattice.

5.10 Blackwell’s renewal theorem: lattice case

Theorem 5.14 (Blackwell’s Renewal Theorem). Assume that the law of T1 is lattice with

span a, then the sequence (m(ai))i∈N satisfies

lim
i→∞

m(a · i)−m(a · (i− 1)) =
a

µ
.

Proof. Via Markov Chains, see exercises.

5.11 Blackwell’s renewal theorem: non-lattice case

Theorem 5.15 (Blackwell’s Renewal Theorem). Assume that the law of T1 is non-lattice,

then for all h ≥ 0

lim
t→∞

m(t+ h)−m(t) =
h

µ
.

Proof. Admitted.

Remark 5.16. Blackwell’s theorem is “stronger” than elementary renewal theorem:

m(t)

t
≈ m(⌊t⌋)
⌊t⌋

=
1

⌊t⌋

⌊t⌋∑
k=1

m(k)−m(k − 1)
(Blackwell)→ 1

µ
.
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Chapter 6

Renewal Equation

Framework: (Ω,F ,P) probability space. In the whole chapter, we fix

T1, T2, . . . i.i.d. random variables on R+

satisfying P [T1 = 0] < 1. We write

µ = E [T1] ∈ (0,∞] and F (t) = P [T1 ≤ t] .

6.1 Lesbesgue-Stieltjes measure

Theorem 6.1. Let g be a right continuous non-decreasing function on R+. There exists a

unique measure νg on R+ such that

∀t ≥ 0 νg([0, t]) = g(t).

Proof. Admitted (follows from Caratheordory’s extension Theorem).

Notation Let g be a right continuous non-decreasing function on R+. For h ∈ L1(νg) or h

measurable and non-negative, write ∫
R+

h dg =

∫
R+

h dνg.

Example 1: F is a right continuous non-decreasing function on R+ and νF corresponds to the

law of T1: for every B ⊂ R+ measurable,

νF (B) = P[T1 ∈ B].

55
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Furthermore, for every h measurable bounded, we have∫
R+

h dF = E[h(T1)].

Example 2: Proposition 5.12 states that the renewal function m is right-continuous non-

decreasing. The corresponding measure νm has the following interpretation: for every B ⊂ R+

measurable,

νm(B) = E [Number of renewals in B] .

Furthermore, for every h measurable bounded, we have∫
R+

h dm = E
[∑
k≥1

h(Sn)

]
.

6.2 Convolution operator

Definition 6.1 (Convolution operator). Let G be a right continuous non-decreasing func-

tion on R+. Let h : R+ → R measurable be such that for all t ≥ 0
∫ t
0
|h(t− s)|dG(s) <∞

or h measurable non-negative. For every t ≥ 0, define

(h ∗G)(t) =
∫ t

0

h(t− s)dG(s).

Remark 6.2. If X, Y are two independent random variables on R+ with distribution functions

FX , FY respectively, then

FX+Y = FX ∗ FY .

The proof is left as an exercise.

This is useful in our context to express the distribution of the n-th renewal time Sn =

T1+ . . . Tn for n ≥ 1. Using the remark above and an induction, we can express the distribution

function of Sn as a n-fold convolution:

FSn = FT1+...+Tn = F ∗n,

where we write F ∗n = F ∗ . . . ∗ F︸ ︷︷ ︸
n times

.

This leads directly to the following expression of the renewal function.
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Proposition 6.3. For every t ≥ 0

m(t) =
∑
k≥1

F ∗k(t).

Proof. For every t ≥ 0 , we have

m(t) = E

[∑
n≥1

1Sn≤t

]
=
∑
n≥1

P [Sn ≤ t] =
∑
n≥1

F ∗n(t).

6.3 Renewal equation

Definition 6.2. Let h : R+ → R be measurable locally bounded (i.e. ∀t ≥ 0, h|[0,t] is
bounded). Let g : R+ → R such that for all t ≥ 0

∫ t
0
|g(t − s)|dF (s) < ∞. We say that g

is a solution of the (h, F ) renewal equation if

∀t ≥ 0 g(t) = h(t) +

∫ t

0

g(t− s)dF (s),

i.e. g = h+ g ∗ F .

Proposition 6.4. m is a solution of the (F, F ) renewal equation, ie. m = F +m ∗ F .

Proof 1.

m =
∑
i>0

F ∗i = F +
∑
i>1

F ∗(i−1) ∗ F monotone cv.
= F +

(∑
i>1

F ∗(i−1)

)
︸ ︷︷ ︸

m

∗F.
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Proof 2. For t ≥ 0, we have

m(t) = E

[∑
k>0

1T1+...+Tk≤t

]
= P [T1 ≤ t] + E

[∑
k>1

1T1+...+Tk≤t

]
︸ ︷︷ ︸

(⋆)

(⋆)
(Fubini)
=

∑
k>1

E [1T1+...+Tk≤t]
(Indep.)
=

∑
k>1

∫ t

0

E [1s+T2+...+Tk≤t] dF (s)

=

∫ t

0

m(t− s)dF (s).

6.4 Excess time

For t ≥ 0, define

Et = SNt+1 − t,

the time left to wait until next renewal.

Proposition 6.5 (Excess distribution function). Fix x ≥ 0. The function ex defined by

ex(t) = P [Et ≤ x] for all t ≥ 0 satisfies

ex = hx + ex ∗ F,

where hx(t) = F (x+ t)− F (t). (i.e. ex is a solution of the (hx, F ) renewal equation).

Proof. Fix x, t ≥ 0. We can separate ex(t) into two parts, one for the probability if there has

already been a renewal before time t, and one if that has not occurred:

ex(t) = P [T1 > t,Et ≤ x] + P [T1 ≤ t, Et ≤ x] .

Now we analyze each term separately. The first term can be directly expressed as

P [T1 > t, T1 ≤ t+ x] = F (t+ x)− F (t).

For the second term, we exploit the renewal structure of the process. Observe that Et is

measurable with respect to (T1, T2, . . .): by definition, we have Et = ϕt(T1, T2, . . .), where

ϕt(t1, t2, . . .) =
∑
n≥0

1t1+···+tn≤t,t1+···+tn+1>t(t1 + · · ·+ tn+1 − t).
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Notice that for every s ≤ t, ϕt(s, t2, . . .) = ϕt−s(t2, . . .). Using this observation, we find

P [T1 ≤ t, Et ≤ x] =P [T1 ≤ t, ϕt(T1, T2, . . .) ≤ x]

=

∫ t

0

P [ϕt(s, T2, . . .) ≤ x] dF (s)

=

∫ t

0

P [ϕt−s(T2, . . .) ≤ x] dF (s)

=

∫ t

0

ex(t− s)dF (s) = (ex ∗ F )(t)

Thus ex(t) = hx(t) + (ex ∗ F )(t).

6.5 Well-Posedness of the Renewal Equation

Theorem 6.6. Let h : R+ → R be measurable, locally bounded. Then there exists a unique

g : R+ → R measurable, locally bounded, solution of

g = h+ g ∗ F,

given by g = h+ h ∗m.

Intuitive Proof. Assume g is a solution, then we have

g =h+ g ∗ F
=h+ (h+ g ∗ F ) ∗ F
...

(∗)
=h+ h ∗ F + h ∗ F ∗2 + h ∗ F ∗3 + . . .

=h+ h ∗m

Rigorous Proof. Existence g = h+h∗m is measurable and locally bounded, because h is. We

have

h+ g ∗ F = h+ (h+ h ∗m) ∗ F
= h+ h ∗ (F +m ∗ F )︸ ︷︷ ︸

=m

= g.
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Uniqueness Let g1, g2 be two solutions of the (h, F ) renewal equation. Then g1 − g2 =

(g1 − g2) ∗ F and therefore, by induction, g1 − g2 = (g1 − g2) ∗ F ∗n for every n ≥ 1 . Fix t ≥ 0.

For every n ≥ 1, we have

|g1(t)− g2(t)| =
∣∣∣∣∫ t

0

(g1 − g2)(t− s)dF ∗n(s)

∣∣∣∣ ≤ sup
[0,t]

|g1 − g2|
∫ t

0

dF ∗n(s).

Where we can see the integral term is equal to P [T1 + . . .+ Tn ≤ t] which converges to 0 as n

tends to infinity. Hence g1 = g2.

6.6 Discussion about the asymptotic Behavior

From now and until the end of the chapter, we assume that F is non-lattice.

Question: Let g be the solution of the (h, F ) renewal equation, what is the asymptotic behavior

of g(t) for t→∞?

A first answer: We start by considering the case h = 1[a,b] for 0 ≤ a ≤ b. Let g = h+ h ∗m
be the solution of the (h, F ) renewal equation. For every t > b, we have h(t) = 0, hence

g(t) =

∫ t

0

h(t− s)dm(s)

=

∫ t−a

t−b
h(s)dm(s)

= m(t− a)−m(t− b)︸ ︷︷ ︸
(Blackwell)→ b−a

µ

.

Hence

lim
t→∞

g(t) =
1

µ

∫ ∞

0

h(s)ds.

How does this generalize?

Idea: Extend to simple functions
∑
λi1[ai,bi] (this is straightforward), and then to a more

general class of measurable functions. A good framework for this extension is to consider

directly Riemann integrable functions.

6.7 Directly Rieman integrable functions
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Figure 6.1: An integrable function which is not dRi.

Definition 6.3. h : R+ → R+ measurable, h is called directly Riemann Integrable (dRi) if

∀δ > 0
∞∑
k=0

δ sup
[kδ,(k+1)δ]

h <∞.

and

lim
δ→0

δ
∞∑
k=0

sup
[kδ,(k+1)δ]

h = lim
δ→0

δ
∞∑
k=0

inf
[kδ,(k+1)δ]

h.

h : R+ → R is dRi if and only if h+ = max(h, 0) and h− = max(−h, 0) are dRi.

Remark 6.7. If h is dRi, then it is integrable. The converse is not true: The function h =∑
k>0 1[k,k+2−k] is integrable, but is not dRi.

Proposition 6.8. Let h : R+ → R+ be measurable.

Assume that h is continuous at a.e. t ∈ R and there exists H non-increasing such that

0 ≤ h ≤ H and
∫∞
0
H <∞. Then h is dRi.

Proof. See Prop. 4.1 in [1].

Remark 6.9. In particular if h is bounded, continuous at a.e. t ∈ R, and vanishes outside a

compact set, then h is dRi.
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6.8 Smith key renewal theorem

Theorem 6.10 (Smith Key Renewal Theorem). Let h be dRi, F non-lattice. Then g =

h+ h ∗m satisfies

lim
t→∞

g(t) =
1

µ

∫ ∞

0

h(u)du.

Remark 6.11. The case h = 1[0,b] corresponds to the Blackwell Theorem.

Proof. Since h is dRi we have ∑
k

sup
[k,k+1]

|h| <∞.

Hence h(t)→ 0. Therefore it suffices to prove

lim
t→∞

∫ t

0

h(t− s)dm(s) =
1

µ

∫ t

0

h(u)du.

Let δ > 0 such that F (δ) < 1.

Assume h =
∑

k≥0 ck1[kδ,(k+1)δ) with ck ≥ 0 and
∑

k≥0 ck <∞. By monotone convergence

h(t− s)dm(s) =
∑
k≥0

ck[m(t− kδ)−m(t− kδ − δ)]︸ ︷︷ ︸
hk(t)

.

Observe that for every u ≥ δ

1 ≥ F (u) = m(u)−
∫ u

0

F (u− s)dm(s) =

∫ u

0

(1− F (u− s))dm(s)

≥
∫ u

u−δ
(1− F (u− s)︸ ︷︷ ︸

≥1−F (δ)

)dm(s) ≥ (1− F (δ)) (m(u)−m(u− δ)) .

In the first equality, it was used that m is the solution of the (F, F ) renewal equation. Hence

for every t and every k

hk(t) ≤
ck

1− F (δ)
,
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by distinguishing between t − kδ ≥ δ and t − kδ < δ, and using that m is non-decreasing,

vanishing on (−∞, 0). By dominated convergence

lim
t→∞

∑
k≥0

hk(t) =
∑
k≥0

lim
t→∞

hk(t)︸ ︷︷ ︸
(Blackwell)

= ck
δ
µ

.

Hence limt→∞
∫ t
0
h(t− s)dm(s) =

∑∞
k=0 ck

δ
µ
= 1

µ

∫∞
0
h(u)du.

Now assume h ≥ 0 dRi. Let δ > 0 such that F (δ) < 1. Write

hδ =
∑
k≥0

( inf
[kδ,(k+1)δ]

h)1[kδ,(k+1)δ)

hδ =
∑
k≥0

( sup
[kδ,(k+1)δ]

h)1[kδ,(k+1)δ).

We have for every t∫ t

0

h(t− s)dm(s) ≤
∫ t

0

hδ(t− s)dm(s)→ 1

µ

∫ t

0

hδ(u)du.

Hence

lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
hδ(u)du.

Since ∣∣∣∣∫
R
hδ(u)du−

∫
R
h(u)du

∣∣∣∣ ≤∑
k≥0

δ
(
hδ(kδ)− hδ(kδ)

) δ→0−→ 0,

where the limit is due to h being dRi. We can let δ tend to 0 in the equation above (with

lim sup) to obtain

lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
h(u)du,

and equivalently

lim inf
t→∞

∫ t

0

h(t− s)dm(s) ≥ 1

µ

∫
R
h(u)du.

1

µ

∫
R
h(u)du ≤ lim inf

t→∞

∫ t

0

h(t− s)dm(s) ≤ lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
h(u)du.
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6.9 Application to the excess time

Assume that µ <∞. Let Et be the excess time (time until next renewal) and ex(t) = P [Et ≤ x].

What is limt→∞ ex(t)? We know that ex = hx + ex ∗ F , where hx(t) = F (t+ x)− F (t).

Remark 6.12. µ = E [T1] =
∫∞
0

P [T1 > t] dt

With this we have that hx(t) ≤ 1 − F (t) = P [T1 > t], and 1 − F (t) is non-increasing in t and

continuous a.e. (because it is the difference of two monotone functions).∫ ∞

0

P [T1 > t] dt = E [T1] = µ <∞.

Thus (by the proposition) hx is dRi. Now we can apply the theorem and get that

lim
t→∞

P [Et ≤ x] =
1

µ

∫ ∞

0

hx(t)dt =
1

µ

∫ ∞

0

F (t+ x)− F (t)dt,

with F (t+ x)− F (t) = E
[
1T1∈(t,t+x]

]
, we find that the limit is equal to

1

µ

∫ ∞

0

E
[
1T1∈(t,t+x]

]
dt =

1

µ
E
[∫ ∞

0

1t∈[T1−x,T1)

]
dt =

1

µ
E
[∫ T1

max{T1−x,0}
dt

]
=

{
T1, T1 ≤ x

x, T1 > x.

Thus for t large: P [Et ≤ x] ≈ 1
µ
E [min{T1, x}].

Remark 6.13. G(x) = 1
µ
E [min{T1, x}] is the delay distribution in the proof of Blackwell’s

Theorem.



Chapter 7

General Poisson Point Processes

Reference Lectures on the Poisson Process (Penrose), Poisson Processes (Kingman)

Framework:

• (Ω,FΩ,P) probability space.

• (E, d) a Polish space (separable, complete, metric space).

• E Borel σ-algebra of E.

• µ sigma-finite measure on (E, E), i.e. there exists a partition

E =
⋃
i∈N

Ei,

such that each Ei is measurable and satisfies µ(Ei) <∞.

Examples:

(i) E = {0}, µ = δ0.

(ii) E = R+, µ = λ · LebR+ “Lebesgue Measure on R+.

(iii) E = R2, µ(dx) = 1
π
e−|x|2dx ’Gaussian’

Goal: We wish to define a random set of points on (E, E) where

”number of points around x” ≈ µ(dx).

In particular we wish to define a random variable: Ω →’set of points in a general state space

E’ (ex: R2, [0, 1]2, a manifold, Z, a space of function,etc...)

65
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7.1 Representing Points?

First question How can we represent points on E = R+ mathematically?

(i) ’Time point of view’, ie T1, T2, . . . where Ti = time between the (i− 1)’th and i’th point.

(ii) Cadlag formulation with values in N. Nt = number of points in [0, t].

(iii) A set of points S = {S1, S2, . . .}

(iv) Measure M : B(R+)→ N with M(A) = number of points in A.

(i) and (ii) are specific to R+ and to not extend to general space. (iii) and (iv) are both

possible. We will prefer (iv) because it allows us to deal with multiplicity.

Notation We consider the measurable space (M,B(M)), where

M = {sigma-finite measures η on E such that ∀B ∈ E η(B) ∈ N ∪ {+∞}} ,

and B(M) is the σ-algebra generated by the sets

{η ∈M : η(B) = k}

for B ⊂ E measurable and k ∈ N.

Proposition 7.1 (Representation as Dirac Sum). Let M<∞ = {η ∈ M : η(E) < ∞},
there exist measurable maps τ :M<∞ → N and Xi :M<∞ → E such that

∀η ∈M<∞ η =

τ(η)∑
i=0

δXi(η).

Remark 7.2. Thus η corresponds to a collection of points {X1, . . . , Xτ}.

Notation: For every k ≥ 0 we write Mk for the set of measures η ∈ M with total mass

η(E) = k.

Lemma 7.3. Let k ≥ 1. There exists a measurable map Z :Mk → E such that

∀η ∈Mk η({Z}) ≥ 1.
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Proof. Fix k ≥ 1 and Y = {y1, y2, . . .} at most countable and dense in E. We will construct by

induction Y1, Y2, . . . some measurable maps fromMk to Y such that for every n ≥ 1

η

( ⋂
1≤m≤n

B(Ym(η),
1

m
)

)
≥ 1,

for every η ∈Mk.

Construction of Y1: Since the set Y is dense in E, we have E =
⋃
i>0B(yi, 1). Therefore,

for every η ∈ Mk, by the union bound we have 1 ≤ η(E) ≤
∑

i≥1 η(B(yi, 1)). We can thus

define

Y1(η) = yi1 where i1 = min{i : η(B(yi, 1)) ≥ 1}.

This define a map Y1 :Mk → Y , which is measurable because for every j

Y −1
1 ({yj}) =

⋂
i<j

{η : η(B(yi, 1)) = 0} ∩ {η : η(B(yi, 1)) = 1}.

Construction of Yn: Let n ≥ 1 and assume that Y1, . . . , Yn−1 have already been constructed.

Let η ∈Mk and C =
⋂

1≤m≤n−1 B(Ym(η),
1
m
). We have

1 ≤ η(C) ≤
∑
i>0

η

(
C ∩ B

(
yi,

1

n

))
.

Define Yn(η) = yin where in = min{i : η(C ∩ B(yi,
1
n
)) ≥ 1}. As above, Yn is measurable.

The sequence (Yn)n≥0 constructed above is a Cauchy sequence (indeed for every n ≥ m

B(Yn,
1
n
) ∩ B(Ym,

1
m
) ̸= ∅, hence by the triangle inequality d(Yn, Ym) ≤ 2

m
). Define Zk+1(η) =

limn→∞ Yn(η) (Zk1 is measurable as a simple limit of measurable functions). Furthermore

{Zk+1(η)} =
⋂
n>0B(Yn,

2
n
) and therefore η({Zk+1(η)}) ≥ 1.

Proof of Proposition 7.1. We haveM<∞ =
⋃∞
k=0Mk whereMk = {η : η(E) = k}. We prove

by induction on k ≥ 0 that for every k ≥ 0 there exist Z1, . . . , Zk : Mk → E measurable such

that

∀η ∈Mk η =
k∑
i=1

δZi
.

For k = 0 there is nothing to prove. Let k ≥ 0 and assume that the property holds. Let η ∈M
such that η(E) = k + 1. By Lemma 7.3, there exists Zk+1 :Mk+1 → E measurable such that

η(Zk+1(η)) ≥ 1. Define

η′ = η − δZk+1(η)
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(η′ is measurable in η). Note that η′(E) = k, and therefore η′ ∈Mk. By induction, there exist

Z ′
1(η

′), . . . , Z ′
k(η

′) such that η′ = δZ′
1
+ . . .+ δZ′

k
. Setting Zi(η) := Z ′

i(η
′) for i ≤ k, we obtain

η =
k+1∑
i=1

δZi(η).

7.2 Point process

Definition 7.1. A point process on (E, E) is a stochastic process

M = (M(B))B∈E

with values in N ∪ {∞}, such that M ∈M a.s.

Interpretation: For fixed B, the random integer M(B) intuitively represents the number of

points in B. A point process indicates how many points there are in each region B of the

space. The condition M ∈ M a.s. ensures that all the numbers of points in different regions

are compatible with each other.

Remark 7.4. In the definition above, we make a slight abuse of notation and also write M for

the random mapping M : B 7→M(B).

As usual in probability, the underlying parameter ω ∈ Ω is implicit. Formally, a point

process is a collection M = (Mω(B))ω∈Ω,B∈E with values in N ∪ {∞} such that

• for every fixed B, ω 7→Mω(B) is measurable.

• for almost every ω ∈ Ω, the mapping Mω : B 7→Mω(B) is an element ofM.

Remark 7.5. One can check that the definition above is equivalent to saying that the mapping

ω 7→Mω is a random variable with values inM.

Examples of Point Processes

• M = 0 a.s. (This corresponds to the random set S = ∅ a.s.)

• E = [0, 1], X random variable on [0, 1]. M = δX is a point process. (This corresponds to

the random set S = {X} a.s.)

• X1, . . . Xn i.i.d. random variable on [0, 1], N = δX1 + . . . + δXn is a point process. (This

corresponds to the random set S = {X1, . . . , Xn} a.s.)
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7.3 Poisson Point Processes

Convention X ∼ Pois(∞) if and only if X =∞ a.s.

Definition 7.2. A Poisson point process with intensity µ on (E, E) (ppp(µ)) is a point

process M such that

(i) For all B1, . . . , Bk ⊂ E measurable and disjoint, M(B1), . . . ,M(Bk) are independent.

(ii) For all B ⊂ E measurable, M(B) has law Pois(µ(B)).

Remark 7.6. Let B ⊂ E measurable. Item (ii) includes the case µ(B) =∞: it is equivalent to

µ(B)

{
∼ Pois(µ(B)) if µ(B) <∞,

= +∞ a.s. if µ(B) =∞.

In particular, by applying the definition to B = E, we obtain that the total number of points

in the space τ :=M(E) is a Poisson random variable with parameter µ(E): we have

τ

{
<∞ a.s. if µ(E) <∞,

= +∞ a.s. if µ(E) =∞.

Remark 7.7. Thanks to Item (ii), we can calculate the average number of points in a region.

For every B ⊂ E measurable, we have

E [M(B)] = µ(B) ,

(on average, there are µ(B) points in B).

7.4 Representation as a proper process

Theorem 7.8. Let M be a ppp(µ) on (E, E). Let τ = M(E) (the total number of points

in E). There exist some random variables Xn ∈ E, n > 0 such that

M =
τ∑

n=1

δXn a.s.
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Remark 7.9. The theorem gives a “random set” interpretation of Poisson process. We have a

correspondence:

M ∈M rand. counting measure ←→ S = {X1, . . . , Xτ} random set

M(B) ←→ |S ∩B|, number of points in B (with multiplicity).

Proof of Theorem 7.8. Let (Ei)i∈N be a partition of E such that µ(Ei) < ∞ for every i. The

process Mi :=M( · ∩Ei) takes values inM<∞. Hence the proposition in the previous section

ensures that there exist some random variables τ (i), Z
(i)
1 , . . . , Z

(i)
τ such that

Mi =
τ (i)∑
j=1

δ
Z

(i)
j

a.s.

Use that M =
∑∞

i=1Mi, and a reordering of the terms in the sums, we obtain the desired

result.

Question Does there always exist a ppp(µ) on E?

7.5 Existence: Spaces with finite measure

Assume µ(E) <∞.

Proposition 7.10. Let Z, (Xi)i≥1 be independent random variables.

Z ∼ Pois(µ(E)), Xi ∼
µ( · )
µ(E)

.

Then M =
∑Z

i=1 δXi
is a ppp(µ) on E.

Proof. Let k ≥ 2 and B1, . . . Bk−1 ⊂ E be disjoint and measurable. Set Bk = E \
(⋂k

i=1Bi

)
.

Fix n1, . . . , nk ∈ N arbitrary. Set n = n1 + . . .+ nk, and define for each i ∈ {1, . . . , k},

Yi =
n∑
j=1

1Xj∈Bi
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Observe that (Y1, . . . , Yk) is a multinomial random variable with parameters (n; µ(B1)
µ(E)

, . . . , µ(Bk)
µ(E)

)

independent of Z. We have

P [M(B1) = n1, . . . ,M(Bk) = nk] = P [Z = n, Y1 = n1, . . . , Yk = nk]

=
µ(E)n

n!
e−µ(E) · n!

n1! · · ·nk!

(
µ(B1)

µ(E)

)n1

· · ·
(
µ(Bk)

µ(E)

)nk

=
k∏
i=1

µ(Bi)
ni

ni!
e−µ(Bi).

By summing over all nk, we get

P [M(B1) = n1, . . . ,M(Bk−1) = nk−1] =
k−1∏
i=1

µ(Bi)
ni

ni!
e−µ(Bi).

Hence M(B1), . . . ,M(Bk−1) are independent Pois(µ(Bi)) random variables.

7.6 Superposition

Lemma 7.11. Let λ =
∑∞

i=1 λi, λi ≥ 0. (Xi)i>0 independent random variables with

Xi ∼ Poiss(λi) for every i ≥ 1. Then the sum X =
∑∞

i=1Xi is a Poiss(λ) random variable.

Proof. See Exercises.

Theorem 7.12. Let Mi, i ≥ 1 be a sequence of independent ppp(µi) where µi and µ =∑∞
i=1 µi are sigma-finite measures. Then M =

∑∞
i=1Mi is a ppp(µ).

Proof. We first check that M is a point process. For every B ⊂ E measurable, M(B) =∑
iMi(B) is a well defined random variable (as a sum of nonnegative random variables). M is

a measure almost surely (as a sum of of measures). Let (En)n∈N be a partition of E such that

µ(En) <∞ for every i. For all n,

E[M(En)] =
∞∑
i=1

E[Mi(En)] =
∞∑
i=1

µi(En) = µ(En) <∞.

Hence M(En) < ∞ a.s. for every n ∈ N, which implies that M is a σ-finite measure almost

surely.
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For B ⊂ E measurable,

M(B) =
∑
i

Mi(B)
(d)
=
∑
i

Pois(µi(Bn)).

By the lemma, M(B) is a Pois(µ(B)) random variable. Finally for B1, . . . , Bk ⊂ E measurable

and disjoint (Mi(Bj))i∈N,1≤j≤k are independent random variables. Therefore

M(Bi) =
∑
i

Mi(B1), . . . ,M(Bk) =
∑
i

Mi(Bk)

are independent by grouping.

Theorem 7.13. Assume that µ is a sigma-finite measure on (E, E), then there exists a

ppp(µ) on E.

Proof. µ =
∑∞

i=1 µi where µi(E) < ∞. Let (Mi) be independent Poisson processes, where Mi

is a ppp(µi). By superposition, M =
∑∞

i=1Mi is a ppp(µ).

7.7 Law of the Poisson process

Let M be a ppp(µ) on E, its law PM is a probability measure onM.

Proposition 7.14. Let M,M ′ be two ppp(µ) on (E, E) then PM = PM ′.

Remark 7.15. PM = PM ′ if and only if for all A ⊂M measurable PM(A) = PM ′(A) if and only

if for all A ⊂M measurable P [M ∈ A] = P [M ′ ∈ A].

Proof. Let B1, B2 ⊂ E measurable, n1, n2 ≥ 0. Define C1 = B1 \ B2, C2 = B1 ∩ B2, and

C3 = B2 \B1.

P [M(B1) = n1,M(B2) = n2] =
∑

m1+m2=n1
m2+m3=n2

P [M(C1) = n1,M(C2) = m2,M(C3) = m3]

=
∑

m1+m2=n1
m2+m3=n2

P [M ′(C1) = m1,M
′(C2) = m2,M

′(C3) = m3]

= P [M ′(B1) = n1,M
′(B2) = n2]
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B1 B2

C1 C2 C3

Where the second equality holds as the Ci are disjoint. Equivalently, for all B1, . . . , Bk ⊂ E

measurable

P [M(B1) = n1, . . . ,M(Bk) = nk] = P [M ′(B1) = n1, . . . ,M
′(Bk) = nk] .

Therefore PM(A)
(∗)
= PM ′(A) for every set of the form A = {η : (η(B1), . . . , η(Bk)) ∈ K} for

B1, . . . , Bk ⊂ E measurable and K ⊂ Nk. Such sets for a π-system and generate B(M). Hence,

by Dynkin’s lemma, (∗) holds for every measurable set A ⊂M measurable.

7.8 Restriction

Notation If ν is a measure on E, C ⊂ E measurable, then we write νC := ν(· ∩ C) (the

measure restricted to C).

Theorem 7.16 (Restriction). Let C1, C2, . . . ⊂ E measurable and disjoint. If N is a ppp(µ)

on E, then NC1 , NC2 . . . are independent ppp with respective intensities µC1 , µC2 , . . .

Proof. Let C0 = E \ (∪i≥1Ci) (possibly empty). This, way we have a partition E =
⋃
i≥0Ci

Let N ′
0, N

′
1, . . . independent ppp with respective intensities µC0 , µC1 , . . .. By superposition N ′ =∑

i≥0N
′
i is a ppp(µ) (indeed, µ =

∑
i≥0 µCi

).

For every B ⊂ E measurable and j ≥ 0

N ′(B ∩ Cj) =
∑
i>0

N ′
i(B ∩ Cj)︸ ︷︷ ︸

=0 a.s. if i ̸=j

= N ′
j(B) a.s.
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Hence N ′
Cj

= N ′
j a.s. Let f1, . . . , fk :M→ R+ measurable.

E

[
k∏
i=1

fi(NCi
)

]
(uniqueness)

= E

[
k∏
i=1

fi(N
′
Ci
)

]
= E

[
k∏
i=1

fi(N
′
i)

]
=

k∏
i=1

E [fi(N
′
i)] .

Hence NC1 , . . . , NCk
are independent ppp(µCi

).

7.9 Mapping

Let (F,F) be Polish space equipped with its Borel σ-algebra. We consider a measurable map

T : E → F.

Given a measure ν on E, we write T#ν for the pushforward measure of ν under T (defined by

T#ν(B) = ν(T−1(B)) for every B ∈ E).

Theorem 7.17. Assume that T#µ is sigma-finite. Let M be a ppp(µ) on E. The process

T#M = (M(T−1(B))B∈F

is a ppp(T#µ) on F .

Proof. We first show that T#M is a point process on F . For every fixed B ∈ F , we have

T−1(B) ∈ E (because T is measurable). Therefore, T#M(B) = M(T−1(B)) is a well defined

random variable. Let M′ be the space of sigma-finite measures on (F,F) taking values in

N ∪ {∞}. Notice that η ∈ M =⇒ T#η ∈ M′. Since M ∈ M almost surely, we also have

T#M ∈M′ almost surely.

Let B ∈ F . By definition, we have

T#M(B) =M
(
T−1(B)

)
∼ Poisson(µ(T−1(B)) = Poisson(T#µ(B)).

Let B1, . . . , Bk be disjoint sets in F . Then, their pre-images T−1(B1), . . . , T
−1(Bk) are

disjoint measurable sets in E . The independence of the random variables

T#M(B1) =M(T−1(B1)), . . . , T#M(Bk) =M(T−1(Bk))

arises from the fact that M is a Poisson point process. As before, we have that T#M(B1) =

M(T−1(B1)) ∼ Poisson(µ(T−1(B1)) = Poisson(T#µ(B1)), and the statement follows.

Remark 7.18. If we decompose M =
∑τ

i=1 δXi
(as in Theorem 7.8), then T#M can be written

as T#M =
∑τ

i=1 δT (Xi). Namely if the process M correspond to the point X1, X2, . . . then the

process T#M corresponds to the image of these points T (X1), T (X2) . . .

Example 7.1. E = R, F = Z, T : E → F ;x→ ⌊x⌋, µ = L, T#µ = | · |.
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7.10 Marking

Motivation Cars on a highway, at time 0 the position of the cars is a ppp(1) on R (that means

on average 1 car per kilometer of highway). We put an observer (Olga) at 0 on R.

Case 1: All of the cars have speed 50km/h, we want to study X = number of cars seen by

Olga in 1 hour. What is the law of X? X ∼ Pois(50).

Case 2: The cars have a random speed ∼ U([50, 100]). What is the law of X? It may at

first seem complicated, but it is not!

Framework Let (F,F , ν) Polish, probability space (’space of marks’).

Definition 7.3. Let M =
∑τ

i=1 δXi
be a ppp(µ) on E. (Yi)i>0 i.i.d. random variable with

law ν independent of M . The Y -marked point process associated to M is the point process

on E × F defined by

M =
τ∑
i=1

δ(Xi,Yi).

Remark 7.19. Xi corresponds to the position of the cars in Case 2, and Yi to their speeds.

Theorem 7.20. The marked process M is a ppp(µ⊗ ν).

Proof. See Section 7.13.

7.11 Thinning

Theorem 7.21. Let p ∈ [0, 1]. Let M =
∑τ

i=1 δXi
be a ppp(µ) on E. Let (Zi)i≥1 be

an infinite sequence of iid Bernoulli random variables with parameter p. The two point

processes

M0 =
∑
i≥1
Zi=0

δXi
and M1 =

∑
i≥1
Xi=1

δXi

are two independent ppp with intensities (1− p)µ and pµ respectively.
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Proof. The point process on E × {0, 1} defined by

M =
∑
i≥1

δ(Xi,Zi).

is Ber(p)-marking of M . Hence by Theorem 7.20, M is a ppp(µ ⊗ Ber(p)) on E × {0, 1}. By

restriction, the two processes M |E×{0} and M |E×{1}, are independent processes with intensities

(µ ⊗ Ber(p))|E×{0} and (µ ⊗ Ber(p))|E×{1} respectively. This concludes the proof since Mj is

the projection o f M |E×{j} on the coordinate j.

7.12 Laplace Functional

Lemma 7.22. Let X be a Pois(λ) random variable, for λ > 0, then for all u ≥ 0

E
[
e−uX

]
= exp(−λ(1− e−u)).

Proof. For every u ≥ 0 we have

E
[
e−uX

]
=
∑
k

λk

k!
e−λe−ku = e−λ exp(λe−u).

Definition 7.4. Let M be a point process on (E, E), for every u : E → R+ measurable define

LM(u) = E
[
exp(−

∫
u(x)M(dx)

]
.

Remark 7.23. LM(u) is well defined. Indeed
∫
E
u(x)M(dx) =

∫
E
udN is a well defined random

variable.

We can interpret
∫
u(x)M(dx) as

∑
x ’points of N’ u(x) with multiplicities counted.

Theorem 7.24 (Characterization via Laplace Functional). Let µ be a sigma-finite measure

on (E, E). Let M be a point process on E. The following are equivalent

(i) M is a ppp(µ),

(ii) For all u : E → R+ measurable

LM(u) = exp

(
−
∫
E

1− e−u(x)µ(dx)
)
.
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Proof. =⇒ Let u =
∑k

i=1 ui1Bi
for B1, . . . , Bk disjoint, ui ≥ 0.

LM(u) = E

[
exp

(
−

k∑
i=1

uiM(Bi)

)]
(indep.)
=

k∏
i=1

E
[
euiM(Bi)

]
=

k∏
i=1

exp
(
−µ(Bi)(1− e−ui)

)
= exp

(
−
∫
E

1− e−u(x)µ(dx)
)
.

For general u ≥ 0, consider (un) of the form above such that un ↑ u. For every n

LM(un)︸ ︷︷ ︸
(MCT)→ LM (u)

= exp

(
−
∫
E

(1− e−un(x))µ(dx)
)

︸ ︷︷ ︸
→exp(−

∫
E(1−e−u(x))µ(dx))

.

⇐= Let B1, . . . , Bk be disjoint. For all x = (x1, . . . , xk) with xi ≥ 0. By applying (ii) to

u =
∑k

i=1 xi1Bi
, we have

E
[
e−x·(M(B1),...,M(Bk))

]
= LN(u)

= exp

(
−
∫
E

1− e−u(x)µ(dx)
)

=
k∏
i=1

exp
(
−µ(Bi)(1− e−xi

)
= E

[
e−x·Y

]
,

where Y = (Y1, . . . , Yk) is a random vector of independent variables. Furthermore Yi are

Pois(µ(Bi)) random variables, since the Laplace transform characterizes the law we have

(M(B1), . . . ,M(Bk))
(law)
= Y.

7.13 Proof of the marking Theorem

First we show that M is a point process. For every B ⊂ E measurable,

M(B) =
τ∑
i=1

1(Xi,Yi)∈B︸ ︷︷ ︸
measurable

.
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Let u : E × F → R+ measurable

LM(u) =
∑

m∈N∪{∞}

E

[
1τ=m exp

(
−

m∑
k=1

u(Xk, Yk)

)]
︸ ︷︷ ︸

f(m)

.

For m <∞, we have

f(m) =

∫
F

. . .

∫
F

E

[
1τ=m exp

(
−

m∑
k=1

u(Xk, yk)

)]
ν(dy1) . . . ν(dyk)

= E

1τ=m
m∏
k=1

(∫
F

e−u(Xk,yk)

)
︸ ︷︷ ︸

e−v(Xk)


where v(x) = − log

(∫
F
e−u(x,y)ν(dy)

)
≥ 0. Hence for all m <∞, we have

f(m) = E

[
1τ=m exp

(
−

m∑
k=1

v(xk)

)]
.

Equivalently and using monotone convergence, the equality above also holds for m = ∞.

Therefore

LM(u) =
∑

m∈N∪{∞}

E

[
1τ=m exp

(
−

m∑
k=1

v(Xk)

)]
= E

[
exp

(
−

τ∑
k=1

v(Xk)

)]

= LM(v) = exp

(
−
∫
E

1− e−v(x)µ(dx)
)

= exp

(
−
∫
E

[
1−

∫
F

e−u(x,y)ν(dy)

]
µ(dx)

)
= exp

(
−
∫
E×F

1− e−u(x,y)ν(dy)µ(dx)
)
.

Hence M is a ppp(µ⊗ ν).
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Appendix

Lemma 8.1. Let A ⊂ N \ {0} be stable under addition (i.e. x, y ∈ A =⇒ x+ y ∈ A). Then

gcd(A) = 1⇐⇒ ∃n0 ∈ N : {n ∈ N : n ≥ n0} ⊂ A.

Proof. ⇐=: Follows from the fact that gcd(n0, n0 + 1) = 1.

=⇒ : Assume gcd(A) = 1. Let a ∈ A be arbitrary and a =
∏k

i=1 p
alphai
i be its prime

factorization. Since gcd(A) = 1, one can find b1, . . . , bk ∈ A such that for all i pi ∤ bi. This

implies

gcd(a, b1, . . . , bk) = 1.

Write d = gcd(b1, . . . , bk). By Bezout’s Theorem, we can pick u1, . . . , uk ∈ Z such that

u1b1 + . . .+ ukbk = d.

Now, choose an integer λ large enough such that ui + λa ≥ 0 for every i and define

b = (u1 + λa)b1 + . . .+ (uk + λa)bk = d+ λ(b1 + . . .+ bk)a.

The first expression shows that b ∈ A, and the second implies that gcd(a, b) = gcd(a, d) = 1.

To summarize, we found a, b ∈ A such that gcd(a, b) = 1.

Without loss of generality, we may assume a < b. Since gcd(a, b) = 1, the set B =

{b, 2b, . . . , ab} covers all of the residue classes modulo a. Since a < b, this implies that B +

{ka, k ∈ N} includes every number z ≥ ab. This concludes the proof by choosing n0 = ab.
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[2] O. Häggström. Finite Markov chains and algorithmic applications, volume 52 of London

Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2002.

81


	Markov Chains: Definitions and construction
	Transition probabilities and Markov Chains
	n-Step Transition Probabilities
	Simulation of a distribution
	Simulation of a Markov Chain
	One-step Markov Property and Homogeneity.
	Law of a Markov Chain

	Markov Property
	Setup
	Simple Markov Property
	Strong Markov Property
	Inter-visit times
	Renewal property of the visit times

	Classification of states 
	Recurrence/Transience
	Positive/Null Recurrence
	Density of visits
	Communication Classes
	Closure property of recurrence
	Classification of states
	Finite classes
	Finite state space

	Convergence to equilibrium
	Stationary Distributions
	Reversibility
	Stationary Distributions for Irreducible Chains
	Periodicity
	Product Chain
	Coupling Markov Chains
	Convergence to equilibrium
	Null recurrent and transient cases
	Monte-Carlo Markov Chain: Hardcore model

	Renewal Processes
	Definition
	Exponential inter-arrival times
	Bernoulli inter-arrival times
	Basic properties
	Exponential moments
	Law of Large Numbers
	Renewal function
	Elementary renewal theorem
	Lattice distributions
	Blackwell's renewal theorem: lattice case
	Blackwell's renewal theorem: non-lattice case

	Renewal Equation
	Lesbesgue-Stieltjes measure
	Convolution operator
	Renewal equation
	Excess time
	Well-Posedness of the Renewal Equation
	Discussion about the asymptotic Behavior
	Directly Rieman integrable functions
	Smith key renewal theorem
	Application to the excess time

	General Poisson Point Processes
	Representing Points?
	Point process
	Poisson Point Processes
	Representation as a proper process
	Existence: Spaces with finite measure
	Superposition
	Law of the Poisson process
	Restriction
	Mapping
	Marking
	Thinning
	Laplace Functional
	Proof of the marking Theorem

	Appendix

