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Chapter 1

Markov Chains: (Generalities

Framework: S finite or countable set. When the setup is not specified, all the random variables
are defined on some abstract probability space (2, F,P).

Goals:
e Define and motivate Markov Chains via transition probabilities.
e Present the connection with linear algebra and graph theory.
e Simulation of MC from uniforms.

e Markov and strong Markov properties.

1.1 Transition probabilities and Markov Chains

Definition 1.1. We call distribution on S a probability measure p on S. It is identified
with a collection p = (i, )zes of numbers satisfying

(i) Ve € S p, >0, and

(ii) ZxES Mo = 1.

Ezxample 1.1 (Uniform distribution). If S is finite, the uniform distribution p is defined by

1

Vo ux:E.
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Ezample 1.2 (Dirac distribution). For fixed z € S, the Dirac distribution 6* = (02),es at z is
defined by
1 ifx=z,

VeeS 0=
0 ifx#z.

Definition 1.2. A transition probability is a collection P = (p,)zyes such that:
(i) Yo,y € S pyy >0, and

(i) Vo € S X coPay = 1.

Equivalently, P is a transition probability if for every fixed z € S, p,. := (Puy)yes is a
distribution on S. There are a few different representations of transition probabilities.

Graph representation We can see (S, P) as a weighted oriented graph with the property
that the weights leaving any vertex must be nonnegative and sum to 1: the vertex set is S, the
edges are all the pairs (z,y) € S?, and the weights are p,.

Figure 1.1: Transition probabilities as weighted graphs.

Matrix interpretation Assume S is finite, say S = {1,...,N}. Then P = (pij)i<ij<n
is a matrix with nonnegative entries (by Item (i)), and such that each line sums to one (by
Item (ii)). Such a matrix is called a stochastic matrix. When S is a general finite set, we can
always enumerate its elements to see P as a |S| x |S| matrix.

Operator interpretation Write L>(S) for the set of bounded function on S. Let P be a
transition probability. To every function f € L*(S), we associate a function Pf defined by

Ve €S (Pfle=) peyly

yes
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Since | >, coPeyfyl < D ycsPeylfyl < [[flleo, the function Pf is well defined, bounded, and
satisfies || Pf|lo < || f]loo- This allows us to identify P with the operator f +— Pf acting on
L>(S). Items (i) and (ii) correspond to the properties that P > 0 (i.e. Pf >0 forall f >0)
and P1 =1.

Definition 1.3. Let P be a transition probability, x4 a distribution on S.
A sequence (X,,),>0 of random variables with values in S is a Markov Chain with initial
distribution p and transition probability P (written MC(u, P)) if for every xzo,...,z, € S

P [XO = Zo, - - >Xn = xn] = M(xo)p:co,m HRY

In this case, we write X ~ MC(u, P).

1.2 n-Step Transition Probabilities

In this section, we fix a transition probability P on S.

Definition 1.4. Let n > 0. The n-step transition probability P™ = (pgg))x7ye £ associated
to P is defined by

po) = Y PenPerssPewoy

In the matrix interpretation of transition probabilities, P" coincides with the n-th power of P.
In the operator interpretation, P™ is the n-fold composition of P by itself.
From the Markov Chain perspective, pé’{) is the probability to move from x to y in n steps,

as stated in the following proposition.

Proposition 1.1. Let z,y € S, n > 0. If X ~ MC(6*, P), then

Notice that the proposition above implies that P" is itself a transition probability.

Proof. By first using the definition of the n-step transition probability and then the definition
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of a Markov Chain, we have

p:(;;/) = Z (Siopfl‘Omlpl‘l.’l‘z te pxn,ly

T0,T15Tn—1ES

= > PXo=x,Xi=21..., X1 =201, X, = y] = P[X,, =1y,

where for the last equality we used the disjoint union

{Xn:y}: U {XOZanuan—l::L'n—laXn:y}-

1.3 One-step Markov property and homogeneity.

A central property of Markov Chain is its absence of memory. Furthermore, the chains we are
considering are homogeneous in time: if X,, = x, the probability to jump from x to y does not
depend on the time n. These two properties can be formalized as follow:

Proposition 1.2. Let u be a distribution on S and P a transition probability. Let X be a
MC(u, P).

[1-step Markov Property] For alln >0 and xg,..., T4 € S

]P)[Xn+1 = Tpt1 ‘ XOI.CUO,...,Xn:In] :P[XnJrl:I'nJrl ’ Xn:JJn]

[Homogeneity] For allm,n >0 and z,y € E

P[Xn+1:y‘Xn:x]:P[Xerl:y’Xm:x]'

Note: By convention when we write P[A | B] we assume P[B] > 0.

Proof. Let n > 0, z,y € S. By summing over all the possible values for Xg, ..., X,,_1, we have

]P)[Xn:ann—i-l :?/] - Z P[X0:$Oa"'7Xn—1 :l‘n—laXn:x)Xn-i-l :y]

= Z HugPugui * * * Pun_1z * pxy

=P[X, = 2] pyy.
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By dividing both side by P[X,, = z| (assuming it is positive), we obtain
P [Xn-i-l =Y | X, = ZL’] = Pay-

Since the right hand side does not depend on n, the equation above already establishes Homo-
geneity.
For the 1-Step Markov Property, let us consider g, ..., z,,1 € S satisfying

]P)[X():ZL'(),...,Xn:CCn]>O.

By using the definition of a Markov Chain,

P [XO = Xgy .- ,Xrn+1 = anrl]
P[XOZLE(),...,X”:IE”]

_ HzoPzoz1 ** * Prnznir
MHzoProzy *° ° Prpn_12n

= Drpongs = P (X1 = Zpgr | X = 20

P[Xn—l—l = Tnt1 | XOZwOa“'aXn:xn] =

1.4 Existence

Theorem 1.3. Let P = (pyy)asyes be a transition probability on S. Then there exist:
e a measurable space (2, F),
e a collection of probability measures (Py)zcs on (Q,F), and
e a sequence of random variables X = (X, )n>0 on (2, F), such that
X ~ MC(6%, p) under P,.

for every x € S.

Proof. We first fix a distribution g on S with u, > 0 for every x € S (see exercises for the
existence of such a distribution) and consider some abstract probability space (2, F,P). let Xq
be a random variable with distribution p. Let Uy, Us, ... be i.i.d. uniform random variables
on [0, 1], independent of X,. Our goal is to use these uniform random variables to construct
inductively a Markov Chain with the desired transition probabilities. To do this, we enumerate
S ={z;,i >0} and set s;; = qu’ Paia,- Note here that s; ;11 — 85 = Pg,e;- Finally, set

d: 5 x [0, 1] — S, (l’“U) = X ifue (Sij7si,j+1]'
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The key property of the function ® is that
Ve,ye S PO(x,Ur) = y] = pay. (1.1)

Define
XnJrl = (I)(Xna Un+1>

for every n > 0 (by induction). By first using independence of the U;’s, and then Equation (1.1),
we find for every zg,...,x, € S,

P [XO = Xg, ... 7Xn = ZL‘n] =P [XO = Xy, (I)({L‘[), Ul) = X1y, (D(l’n_l, Un) = lL‘n]
= HaoPzoz1 " " Prrn_12n-
Now if we define P, as P[ - | Xy = z|, then we have for every z € S that
Pac [XO = Zg,- .. aXn = xn] = 5£0pxoac1 o Prp gz,

]

Remark 1.4. The proof above is constructive and provides us with a recipe to construct Markov
Chains from uniform random variables. This is particularly useful if one wants to simulate

Markov Chains.

Framework for the rest of the chapter S is finite or countable, P transition probability,
(Q, F, (P.)zes) probability spaces, X = (X,,),>0 random variables such that for every z € S

X ~ MC(6,,p) under P,.
For 1 a probability measure on S we write P, = > 1, P,. This way, we have

X ~MC(p,p) under P,,.

1.5 Simple Markov Property

Notation. For every n € N, write F,, = 0(X, ..., X,).

As we have seen in Section 1.3, a Markov Chain X ~ MC(u, P) satisfies two key properties:
absence of memory and homogeneity. The simple Markov Property can be seen as the combi-
nation of these two properties. In words, it states that for every fixed time k € N and state
x € S, the following holds:
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“Condition on X, = x, (Xgin)n>o is a MC(6%, P), independent of Fy..”

This is formalized in the theorem below.

Theorem 1.5 (Simple Markov Property (SIMP)). Let p be a distribution on S. Let x €
S,k € N. For every f : SN — R measurable and bounded, for every Z Fi-measurable,
bounded random variable, we have

Ey [f(Xign)nzo) - Z | Xi = 2] = Eu [f(Xn)nz0)| Ex [Z | X = 2] (1.2)

Lemma 1.6. Let u be a distribution on S. Let x € S,k € N. For every N >0, xg,...x € S,
Yo,---,Yn €S, we have

P#[Xk:yo,...,Xk+N:yN,onxo,...,Xk:xk|Xk::1;]
:Px[XO:yo,...,XN:yN]PM[XQZZL'(),...,Xk:$k|Xk:[L’]

Proof. Without loss of generality, we may assume x = yo = x, (otherwise both sides vanish,
and the equality is trivially true). By definition, and using d; = 1, we have

Pu[Xk:3/07~--7Xk+N:yNyX():an---;Xk :.fk}

p— .« .. T DY
- :ul‘opl’oxl pxk—lxkéyopyoyl pyN—1yN

= P#[XO = IO,...,Xk = Ik]Px[Xo = yo,...,Xk = yk]

The statement follows by dividing both sides by P,[X}), = xi] = P,[X}) = «].
[l

The lemma above establishes Theorem 4.15 when f is of the form f(§) = Llg—y,. en—yn
and Z = 1x,=g,.. x,=2,- Lhe extension to general functions follows from standard measure-

theoretic approximation arguments, detailed below.

Proof of Theorem 1.5. Let Z be an Fjp-measurable, bounded random variable. By linearity,
Lemma 1.6 implies that

E, [1a((Xitn)nz0) - Z | X = 7] = By [La(Xn)nz0)| B [Z | Xy = 2]. (1.3)

for every A C SN of the foorm A = {& € SN : & = wo,...&n = yn}, for N > 0 and
Yo,---,yn € S. The collection of such sets form a m-system generating the product o-algebra
on SY. Furthermore, the collection of sets A satisfying (1.3) is a A-system. Hence, by Dynkin’s
Lemma, Equation (1.3) is satisfied for all A C SN measurable.

Now, let f : SY — R measurable and bounded. Equation (1.2) is proved by first approxi-
mating f by step functions f, and then using linearity. m
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Corollary 1.7. Let p be a distribution on S, x € S, k € N. For all f : SN — R measurable
and bounded, we have

E, [f(Xetn)nzo) | X = 2] = Eg [f((Xn)nz0)] -

Proposition 1.8 (Chapman Kolmogorov (CK)).

VYm,n>0 Vr,yeS pg;%) = ZP;&??QZ

z€S
Proof. Fix m,n and z,y € S.
pg;—m) = P:v m4n = y Z P, [ Xoin | X ]Paf [Xm = z]
z€S
(SiMP)
z€eS z€S

1.6 Strong Markov Property

Definition 1.5. Let 7': Q@ — NU {400} be a random variable with values in NU {4+o00}. We
say that T' is an (F,)-stopping time if

VneN {T=n}eF,.

Ezample 1.1 (Hitting Times). Hy = min{n > 0: X,, € A} (for A C S) and H, = min{n > 0:
X, = x} are stopping times.

Definition 1.6. Let T be a stopping time.
Fr={AeF:VneN: {T=n}nAecF,}.
In words, the strong Markov property says the following:
"Conditioned on {T < 0o, X7 =z}, (X14n)n>0 is a MC(6*, P) independent of Fr”

This is formalized in the following theorem, called the strong Markov property.
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Theorem 1.9 (Strong Markov Property (StMP)). Let p be a distribution on S, T an
(Fn)-stopping time. Let x € S, then for all f : SN — R measurable and bounded, and Z
Fr-measurable and bounded, we have:

E, [f(Xrin)nz0) - Z | T < 00, Xp = 2] = By [f(Xn)nz0)| Eu [Z | T < 00, X7 = z].

Proof. We will multiply each side of the equation by P, [T" < oo, X1 = z].

E, [f(X74n)n>0)Z 1 1<o0 Xp=a] ZE (Xktn)n>0)Z1r—k xp—k]

k>0
= Y B [f(Xitn)nz0)Z1r—y | Xi = 2] P, [X, = 2]
k>0
(Sil\:/IP) Z Ea: [f((Xn)nZ(J)] Eu [ZlT:k,Xk:m]
k>0
= E, [f((Xn)nZO] Z EM [ZlT:k,Xk:ar] =E, [f((Xn)nZO)] EM [Z1T<007XT:$] :

k>0
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Chapter 2

Classification of states

Framework: S finite or countable set, P = (psy ). yes transition probability, (2, F, (Py)zes)
probability spaces, X = (X,,)n>0 ~ MC(6%, P) under P, P, = > u,P,.

Goals:

e Definition of recurrence/transience.
e Positive recurrence: renewal structure of the visit times.

e Decomposition of the state spaces into classes gathering sites with similar properties.

2.1 Recurrence/Transience

Notation: For z € S, let H, = min{n > 1: X,, =z} and p, = P,[H, < c0].

Definition 2.1. Let z € S, we say that:

e 1 is recurrent if .
e 1 is transient if .

2.2 Dichotomy theorem

Notation: For x € S let

va = Z ]-Xn:ac

n>1

17
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denote the total number of visits of x by the chain after the first step.

Theorem 2.1 (Dichotomy Theorem). z € S:

e if x is recurrent, then P.-a.s..

e if x is transient, then |E, [V,] < co]|.

Remark 2.2. The theorem excludes the case P, [V, < oo] > 0 and E, [V,] = +00.

2.3 Inter-visit times

Definition 2.2. Fix © € S. The sequence (7;);>1 of inter-visit times at z is defined by

induction by setting T} = H, and for all 1 > 1

min{n >1: Xy 410 =2} ifT; < oo,
Ti+1 =

+00 otherwise.

Xo
Ty T

x -
L i time
T 15 13

—i
—

Figure 2.1: Hlustration of the inter-visit times a x.

Lemma 2.3. For everyi > 1,z € S, we have
P.[T; < oo] = pl.. (2.1)

Proof. We prove the result by induction on i. Equation (2.1) holds for i = 1 by definition of p,.
Now let ¢ > 1 and assume that (2.1) holds. In order to have T;;; < oo, we must have
T} < oo, therefore

P.[Tiv1 <00l =P, [Tis1 <00, T) <o)l =P, [Ty < oo|T) < 00|+ pa.
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Since T} = H, is a stopping time, we can apply the strong Markov property to get
P, [Tiy1 < oo|T} < o0] = P, [T < 00] = pt,

and the two equations above imply that Equation (2.1) holds for ¢ 4 1.

2.4 Proof of the Dichotomy Theorem

Let x € S. Notice that V, is infinite if and only 7 is finite for every i. Therefore, using
{T; < 00} D {Ti41 < oo}, we have

P, [V, =o0] =P, ﬂ{Ti<oo}]:ilggopm[:n<oo].

i>1
If x is recurrent, Lemma 2.3 that the limit above is equal to 1, hence
P,[V, =o0] =1.

Now, let us assume that x is transient, i.e. p, < 1. For every ¢, by definition we have T; < oo
if and only if V,, > ¢. This implies that P, [V, > i] = p! by Lemma 2.3. Therefore, V, is a
geometric random variable with parameter 1 — p, > 0, and its expectation is

2.5 Positive/Null Recurrence

Notation: For z € S write m, = E, [H,].

Definition 2.3. Let z € S be a recurrent state. We say that x is:

e positive recurrent if
e null recurrent if .

The terminology positive/null recurrent is explained in the following section: we will see

that the positive recurrent states are the ones which are visited a “positive density” of times,
while null recurrent states are visited with a “null density” of times. See the discussion below
Theorem 2.4 for more details.
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2.6 Density of visits

Notation: For x € S and n > 0, let

V;;(n) - i 1Xk:m
k=1

denote the number of visits to x up to time n. The ratio %Ey [Vw(n)] can be interpreted as the
average density of time that the chain spends at x before time n.

Theorem 2.4 (Density of visits). Let z,y € S be such that P,[H, < oo] =1. Then

lim — = —.
n—o0 n my

This theorem can be interpreted as follows:

“In expectation, the density of time spent by the chain at x is m%.”

If = is transient, or null recurrent (m, = oo), this density is null. If y is positive recurrent, this
density is positive.

Remark 2.5. Notice that

k=1 k=1

Therefore the theorem above can be rewritten as

1 < 1
n — E (k) — =
7}1_1)1(;10” k:1pyx my

Theorem 2.4 will be proved in Section 2.8, using some tools from renewal theory.

2.7 Renewal property of the visit times

Lemma 2.6. Let z,y € S be such that x is recurrent and P,[H, < oo] = 1. Under P, the
inter-arrival times (after the first visit of x) Ty, Ts, ... at x are i.i.d. with law given by

VteN P,[T,=1 =P, [H,=1].

for every i > 2.
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Remark 2.7. We emphasize that the lemma concerns the inter-visit times 7} starting at ¢ = 2.
Indeed, the time 77 corresponds to the time needed to reach = from y, while 75, 7%, - - - represent
the successive times to reach x from x. Therefore, in general, the distribution of 77 is not the
same as the following times if y # x. However, if y = x, we have T, T5, - - - iid under P,.

Proof. We prove by induction on i that for every i > 1 we have P,[T},...,T; < co] =1, and

The statement holds trivially for ¢ = 1 (the equation above is an empty statement in this
case). Let i > 1 and assume that the statement holds for i. One can check that the random
time 7' = 17 + --- + T} is a stopping time. Furthermore we have P [T" < oo, X1 = 2] =1
(by the induction hypothesis). By the strong Markov property, for every fo,..., fix1 : N = R
bounded, we have

Ey [fo(T2) - firi(Tia)] = Ey[fo(T2) - fiqs (Ti1)|T < 00, X7 = 7]
CEVE, [L(Ty) - fi(T)] By [fr (min{n > 1: X, = 2})]

= B [fa(Hy)] - Exlfiva(Hy)),

where we use the induction hypothesis in the last line. O]

2.8 Proof of the “density of visits” Theorem

Case 1: z transient. By the strong Markov property, we have E,[V,] < co. Therefore

E,[V:"] _ E, [Vi]

n - n

— 0.

Case 2: x recurrent. By Lemma 2.6, we know that the inter-visit times 75,73 ... at x are i.i.d.
under P, and fulfill E, [T;] = E, [H,] = m,. Then we can use the Law of Large Numbers and
P, [T} < o] =1. We find P -a.s.,
T+ L+ T

lim —— =m,.

1—>00 7
Note that this includes the case of m, = 0o, by the following truncation argument: if m, = oo,
consider K > 0. By the law of large numbers, P -almost surely,

ToNK T NK
lim inf lim(Q/\ )+ 4 (T AK)

n—00 n n—o00 n

T2+...—|—Tn>
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By monotone convergence, we can let K tend to infinity, and we obtain

. I+ .+ T,
lim ——————— =

n—00 n

(0. 9]

P -almost surely.
Now we write N,, = v (the number of visits to « at time n). Following directly from the
definition of N,, we have that for any n > 0 that

T1+...+TNH_1§n<T1+...—|—TNn.
Hence, for every n > 0

Nn <‘/y(n) - Nn
T1+---TNn n _Tl—l-...—l—TNn,l'

The upper and lower bounds each converge to mL almost surely. Hence, we can conclude

v
n

(n)
that E, [VIT} — m% by the Dominated Convergence Theorem (using the domination <1).

2.9 Communication Classes

Here we will see P as a weighted oriented graph.

Definition 2.4. Let x,y € S. We say that y can be reached from x if there exists an n > 0

such that p;(,;Z) > 0 and we write + — y. Furthermore, we say that x and y communicate if

y — z and x — y, and we write x <> y.

Remark 2.8 (Probabilistic interpretation).

r—y < >0P,[X,=y]>0 < P,[In>0X,=y]>0.

Proposition 2.9. < is an equivalence relation on S.

Proof. Follows from Chapman-Kolmogorov equations. m

Definition 2.5. The equivalence classes of <> are called communication classes of P .

If P has a single unique communication class, we say that P is irreducible.
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A communication class C' is said to be closed if for any x,y € S

reCax—y = yedl.

Proposition 2.10. Let C' be a communication class.

Cis closed <= VreC P,vn>0X,ecC]=1

"If one starts in C', one never leaves.”

Proof.

(Cisnot closed) <= Jx € CIye S\Cx—y
< JreCIyeS\CP,[IM>0X,=y]>0
< JreCP,)In>0TFyeS\CX,=y]>0
< JreCP,In>0X,eS\C]>0
<< JreCP,vn>0X,\C|]<1.

2.10 Closure property of recurrence

Theorem 2.11. Let x,y € S such that © — y. If x is recurrent then y is recurrent and
P,[H, < ] =P, [H, < oo] =1. In particular x < y.

Proof. We want to use that every time the chain visits z, it has a non-zero probability to visit y
after that, visiting = infinitely often should ensure that y is also visited infinitely often. Assume
y # x and x recurrent. Let zq,...,2,_1 be distinct elements of S, not equal to = or y such that
Paz * Pz 4y > 0. Then we have

0 = P,[H,=00]2>2P, [X1=21,...,Xp1 =251, X = y,Vn > 0 Xy y, # 7]
(SIMP) P, Xi=2,....Xs=y|P,[Vn >0 X, #z].

J/

-~

TV
>0 P, [H,=o]
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Thus P, [H, < oo] = 1. Next, we have to show that y is recurrent. Choose m,n such that

p:(;;y), pé]?ﬁ) > (0, we have

= pl) > plmrken) < Pl (Zp )pxy :
0

k>0 k>0 k>0
g g TR0 LT

=00

Hence, y is recurrent. To show that P, [H, < co] = 1, use the same argument as above, but
with the roles of z and y swapped (y — x, y recurrent), as before. ]

Remark 2.12. Let x € S recurrent and x # y then

r—y <= P,H,<x]>0 < P,[H <oo]=1

Corollary 2.13. A recurrent class is always closed.

Proof. C recurrent, x € C, if x — y then we must have y — x (otherwise z wouldn’t be
recurrent), therefore y € C. O

The theorem above gives us a simple criterion for transience:

Corollary 2.14. If x — y but y - x, then x is transient.

2.11 Classification of states

Theorem 2.15 (Classification of states). Let C C S be a communication class. Then
exactly one of the following holds:

(i) For all x € C, x is transient.
(i1) For all x € C, x is null recurrent.

(1i1) For all x € C, x is positive recurrent.
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Proof. Fix x,y € S with x <> y. We prove that y is of the same type (transient, null recurrent
or positive recurrent) as x.

If x is transient then y is also transient by Theorem 2.11.

Let us now assume that x positive recurrent. Fix k£ > 0 with p;’;) > 0. By Chapman-

Kolmogorov, we have for all j > 0

(k+7) > p(j) (k)

p:vy x:ppmy :
Thus
1 n 1 n—k
, A X
e (25
i=1 j=1 ~
—_—— —-, >0
1 1
my mg
Therefore, mi > (0 and y is positive recurrent. O
Y

Definition 2.6. A communication class C' C S is said to be transient (resp. recurrent,
null recurrent, positive recurrent) if all its elements # € C are transient (resp. recurrent,

null recurrent, positive recurrent).

A consequence of the theorem above is that we can partition the state space S as

]S:TURluR2u-~-,

where T is the set of transient states (1" is equal to the union of all the transient classes), and
Ry, Ry, ..., are the recurrent classes.

We can classify the behavior of the chain by differentiating if X,, starts in some R} and if
X, starts in 7. In the former case the chain remains in Ry forever. If X, starts in 7', either it
remains in 71" forever, or at some point it moves into an Ry and remains there forever.

Definition 2.7. When P is irreducible, all the sites x € S are in the same class, and we
simply say that P is transient (resp. recurrent, null recurrent, positive recurrent) in the

corresponding cases.

2.12 Finite classes
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Proposition 2.16. Let R be a recurrent class, if R is finite, then R is positive recurrent.
In particular, if S is finite, then every recurrent state is positive recurrent.

Proof. Fix x € R, since R is closed we have for every n > 0
1=P,[X, e R =) pl.
yeER
Hence,
=3 pry 3
yGR = YyER My

Thus, there must be a y € R such that m, < oo, implying that the entire class is positive
recurrent.

]

2.13 Finite state space

Proposition 2.17. If S is finite, then there exists a recurrent state v € S.

Proof.

DI ) TN 3) SN SR
€S zeS n>0 n>0 zeS n>0
Fix some y € S.

> E,[Vi]=

€S

Ve

z€S

Thus we know there exists x € S such that E, [V,] = co. Using that V,, = V15, o, we find

00 =B, Vil <o) "2 (1 + B, [V,))P, [Hy < 0] < 1+ E, [V].

Therefore, E, [V,.] = oo, which concludes that z is recurrent. O



Chapter 3

Convergence to equilibrium

Framework: S finite or countable set, P = (psy ). yes transition probability, (2, F, (Py)zes)
probability spaces, X = (X,,)n>0 ~ MC(6%, P) under P, P, = > u,P,.

Goals:
e Definition stationary/reversible distributions.
e Criteria for existence of stationary distributions.

e Behavior of X, for n large?

3.1 Stationary Distributions

Notation: Let p be a distribution on S. We define the distribution pP by setting
x€S

(One can check that that it indeed defines a distribution.)
Write p,, for the law of X,, under P,. It follows from the simple Markov property that the
sequence (p,,) satisfies the induction

Mo = K,
fni1 = P for all n > 0.

For n large, we expect u, to be close to a fixed point of the map A — AP. Such a distribution =
is invariant under the dynamics of the process, and the relationship to the long-time behavior
of the Markov Chain will be rigorously analyzed in this chapter.

27
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Definition 3.1. Let 7 be a distribution on S, we say that 7 is stationary (for P) if

When S is finite and if we see P as a matrix, then a stationary distribution corresponds to

a left eigenvector m of P for the eigenvalue 1.

Probabilistic interpretation If 7 is a stationary distribution, then for all n > 0

P X, =z =m,.|

3.2 Reversibility

Definition 3.2. A distribution 7 on S is said to be reversible (for P) if for any x,y € S

Ty Poy = Ty Pya-

The equation above is equivalent to
Pﬂ—[XO = JZ,Xl = y] = PW[XO = y,Xl = .%']

Namely, the starting distribution 7 is reversible if under P, the probability of starting at y
and going to x is equal to the probability of starting at x and going to y. More generally,
one can prove (exercise) by induction that 7 is reversible if and only if for every n > 1 and
Toy..., Ty, €8

PW[XOZI'Q,...,XHZZL‘n]:PW[X():lL‘n,...7Xn:ZL‘0].

“The probability of a trajectory is equal to its time-reversal.”

Proposition 3.1. Let 7 be a distribution on S. If 7 is reversible, then mw is stationary.

Proof. Let m be a reversible distribution. For every y € S, we have

reversibility
(mP)y = E :sz:vy = E :Wypy:r = Ty E :pyw = Ty-

€S €S €S
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3.3 Stationary Distributions for Irreducible Chains

Recall that m, = E,[H,], where H, is the hitting time of x.

Theorem 3.2. Assume that P is irreducible.
e [f P is transient or null recurrent, then there is no stationary distribution.

o [f P 1is positive recurrent, then there exists a unique stationary distribution given by

T, = — |
My

Proof. Case 1: P transient. Assume for contradiction that there exists a stationary distribu-
tion m. For every x € S and every n > 0 we have

7. = P X, = x].

Write L, for the last visit time of . The dichotomy theorem together with the strong Markov
property imply that L, is finite P,-almost surely. Therefore
n—oo

P.[X, =] < P[L, > n] 22 0.

Therefore, m, = 0 for every x € S, this is a contradiction to }_ 7, = 1.
Case 2: P null recurrent. Assume for contradiction that there exists a stationary distribu-
tion 7. As in the transient case we show m, = 0 for every x. For every x € S and for all n > 0,

we have
1 & B Vi) E,[Vz")
SR % P RS Lk N g P L (31)
k=1 yes
Since P,[H, < oo] =1 for every y € S, by the density of visit theorem, we have

E, [V 1
lim ——~ - [V ]
n—00 n My

By the Dominated Convergence Theorem (using the domination %’M < 1), we can take
the limit n — oo in (3.1) to conclude 7, = m% = 0.

Case 3: P positive recurrent. The same argument as in the null recurrent case shows that
there is a unique candidate for a stationary distribution, given by

My = —.
mx
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To conclude, one needs to prove that this measure is indeed a stationary distribution.
First, let us fix £ > 1. By Theorem 2.4 (density of visits) we have for every y € S

1
— =
o = Zpyy

= JH&Z< Zp )pxy

€S

Fa;ou Zhggggf( Zpg k:)) ny

€S
S 1w
m Y
€S x

Analogously, for a fixed z € S, we have
1 (Fatou)
1= lim ~ P[Xes_ggoz ZP =y > Z_
j=1 yeSs yeS

We now prove that the two inequalities above are actually equalities. First, we sum the first
inequality over y and get

DR S DI ED o

yes yeS \z€S z€S

Thus the inequality must be an equahty. Namely, for every k > 0 and for all y € .S, we have

= Z pxy (3.2)

We can use this to show that the second inequality is actually an equality. Fix y € S and note
that miy > (0 by positive recurrence. We have

1 .1 1
o JEEOEZ<Zmp5@)>

k=1 eSS
, 1 [1&
= JE&Zm— (g ;p§§)>
DCT)
> o

€S

Hence, m, = m% defines a distribution, which is stationary (this follows from Equation (3.2)

with k = 1). m
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3.4 Periodicity

Definition 3.3. Let © € S. The period of x is defined by

d, = ged{n > 0:p > 0} |

By convention ged () = oo.

The following proposition asserts that the period is constant on the communication classes.

Proposition 3.3. Let x,y € S. If v <+ y, then d, = d,,.

Proof. Let x # y. We prove that d,|d,.
Let us fix k,¢ > 0 such that pgi) ) pgfy) > (. Since pé@M) > pé’i)p,(fy) > 0 we have that d,|k + (.
Now we show that d, is a common divisor of {n > 0 pg;;) > 0}, this will imply our claim. For

every n > 0 satisfying p{% > 0, we have

(k-+L+n)

k), (n), (£
Pl (k) y(n) o (

Z pyxpxajpxy) > 07
hence d, |k + ¢+ n. Since d,|k + ¢, we also have d|n. O

Consequence: If P is irreducible, we have

Ve,ye S d, =d,.

Definition 3.4. We say that P is aperiodic if for every x € S

d, =1.

Proposition 3.4. Let x be in S. We have d, = 1 if and only if there is an ng > 1 such

n)

that for every n > ng we have that p(m > 0.

We use the following lemma from number theory.

Lemma 3.5. Let A C N\ {0} be stable under addition (i.e. v,y € A = x+y € A). Then

ged(A) =1 <= dnpeN:{neN:n>ny} CA
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Proof.
Follows from the fact that ged(ng,ng + 1) = 1.

Assume ged(A) = 1. Let a € A be arbitrary and a = Hle p;* be its prime factorization.
Since ged(A) = 1, one can find by, ..., by € A such that for all i p;  b;. This implies

ged(a, by, ... bg) = 1.
Write d = ged(by, . .., bg). By Bezout’s Theorem, we can pick uy, ..., u; € Z such that
urby + ... +upby = d.
Now, choose an integer A large enough such that u; + Aa > 0 for every ¢ and define
b= (u; +Aa)by + ...+ (ur + Aa)bp = d + A(by + ... + br)a.

The first expression shows that b € A, and the second implies that ged(a,b) = ged(a,d) = 1.
To summarize, we found a,b € A such that ged(a,b) = 1.

Without loss of generality, we may assume a < b. Since ged(a,b) = 1, the set B =
{b,20,...,ab} covers all of the residue classes modulo a. Since a < b, this implies that B +
{ka, k € N} includes every number z > ab. This concludes the proof by choosing ng = ab. [
Proof of Proposition 3.4. The set A, = {n > 0: p;@ > 0} under addition, because p%%) >

(m

pm)pgﬁ) for every m,n > 0. The proof follows by applying the lemma to A = A,. n

3.5 Product Chain

Our goal in the next two sections is to define two Markov Chains X a MC(u, P) and X a
MC(v, P) on the same probability space such that X,, = E(Vn for n large.

To achieve this, we first consider two independent chains X and Y. We then show that the
chains meet almost surely (under some assumptions on P) at some random time 7. Then we
ask that the chains follow the same trajectory for ¢t > T

Notation: Let u, v be two distributions on S, we write u®v for the distribution on S?, defined
by
V(z,y) € S* (L@ V) (2y) = Mally-

Proposition 3.6. Let X ~ MC(u, P) and Y ~ MC(v, P) be two independent Markov
Chains. The sequence of random variables (X,Y) := ((Xn, Yn))n>0 is a Markov Chain on
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Figure 3.1: A coupling of two simple random walks started from 6 and 0

S? with initial distribution p ® v and transition probability P defined by

pw,w’ = pxm/pyy/ .

Remark 3.7. To see that P = (P, )wwes? is a transition probability, calculate

Z ﬁww' = Z Pzz'Dyy' = 1.

w'es z’'y'es

Proposition 3.8. If P is irreducible and aperiodic then P is irreducible and aperiodic.

Remark 3.9. Aperiodic is important. Indeed P irreducible does not imply that P is irreducible
in general. For example, consider S = {1,2} and pj2 = ps; = 1. In this case, P is irreducible,
but P is not irreducible.

Proof. Let w = (z,y) and w’' = (2/,3y') € S?. By irreducibility we can choose k, ¢ > 0 such that

pg;)/, pgy), > (. Then for every n > max(k, ) we have

—(n n n k n—k) (£ n—~¢
A, ) 5 00 00

(n—k

This holds as the two terms p,, ., ) and pg;e) are strictly positive for n large enough. O]

Proposition 3.10. If 7 is stationary for P then © @ 7 is stationary for P.
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Proof. For every (y,y') € S? we have

TyTy = Z TPy Z Ty Pty = Z Ty T o' DayPa'y’ -

z€S z'eS (z,x')€S?

3.6 Coupling Markov Chains

In this whole section, we fix X ~ MC(u, P) and Y ~ MC(v, P) two independent Markov
Chains on some probability space (2, F,P).

Definition 3.5. We define the stopping time (for the product chain (X,Y))

T =min{n >0:X, =Y,}.

Remark 3.11. To see that T is indeed a stopping time, notice that T'= H with A = {(z,y) €
S%:ax =y}

Proposition 3.12. For everyn >0

> IP[X, =a] - P[Y, =2]| <2P[T > n].

zeS

Lemma 3.13. The sequence of random variable X = ()?n)nzo defined by

P Y, forn<T
" Xn fornzT.

1s a Markov Chain on S with initial distribution v and transition probability P.

Proof. Define Y by

~ X, forn<T
Y., fornZT'

Let n > 0. Writing X, for (Xy,...,X,), we show that (Xp,, Y},) and (Y, X}n)) have the
same distribution. This implies that X|,; has the same distribution as Y], which concludes the
proof. To achieve this, we fix x = (z¢,...,2z,) and y = (yo, ..., y) € S™, and prove that

P[Xp) = @, Vi = 4] = P[Yjy = 2, X = ). (3.3)
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If x; # y; for every i < n, then the trajectories  and y do not intersect and (3.3) is a direct
consequence of the definition of (X,Y’). Now, we assume that z; = y; for some index ¢ < n and
we prove that (3.3) also holds in this case. Define

t =min{i : z; = y;}.
In particular we have x; = ;. If X, = x,Y},) = y then T" = ¢. Furthermore, by using z;, = y,
and the independence between X and Y, we find
]P[X[n} = I’,}/’[n] = y] = P[X[n] = (x()? ceey Tty yt+17 s JyTL)?}/[’n] = (y()? L 7yt7'rt+17 oo 71;71)]
= P[Yyy = 2, Xpy = y].
which concludes the proof. n

Proof of Proposition 3.12. We use the coupling between X and X to conclude the proof. For
every n > 0

SOIP[X, = a] - [Yn:m]y:Z‘P[Xn:x]—ﬁn[)?n:m”

€S z€eS
:Z‘]P’[Xn:x,TSn]+IP’[Xn:x,T>n]
zeS
—P[)?n:x,Tgn] —P[)znzx,T>nH
gZP[Xn:x,T>n]+P[)~(n:x,T>n}

€S

=2P[T > n].

3.7 Convergence to equilibrium

Theorem 3.14. Assume that P is irreducible, aperiodic, and admits a stationary distribu-
tion w. Then for every distribution p on S and x € S

lim P, [X, =] =7,.

n—oo

Equivalently: Under P, : X, (hﬂf) X where X ~ 7.

Equivalently: For all f :.S — R bounded: lim, . E, [f(X,)] = [, fdn.
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Proof. Consider the product chain (X,,,Y,)n>0 as before, where X has initial distribution p
and Y starts with the invariant distribution 7 .

By Proposition 3.8, the product transition probability P is irreducible. Furthermore, by
Proposition 3.10, it admits a stationary distribution. By Theorem 3.2, this implies that P
is positive recurrent. Fix an arbitrary vertex a € S and consider the hitting time H, ) for
the product chain. Since P is irreducible and recurrent, Theorem (2.11) (closure property of
recurrence) implies that the hitting time H,) is finite almost surely. Therefore, the stopping
time 7' = min{n > 0 : X,, = Y,,} is also finite almost surely, because 7' < H(,4). By applying
Proposition 3.12, we have that for every x € S

n—oo

P[X, =2] — 7| = |P[X, = 2] = P[Y, = 2]| <2P[T >n] === 0.

3.8 Null recurrent and transient cases

Theorem 3.15. Assume that P is irreducible, aperiodic, and null recurrent or transient.
Then for every distribution p and every x € S

lim P, [X, =x] =0.

n—oo

Lemma 3.16. Assume that P is irreducible and recurrent. For every p distribution on S, any
i >0, and every x € S

lim [P, [X, =2 -P,[ Xy =2]| =0

n—o0

Proof. Fix ¢ > 0 and consider the distribution p; = pP* (i.e. p; is the law of X; under P,,).
Let X ~ MC(p) and Y ~ MC(y;) be two independent Markov Chains. For each n > 0, the
distribution of Y}, is y; P" = pP™™ (by Chapman Kolmogorov equations), therefore

VeeS PIY, =z]=PX,; =z

The stopping time 7' = min{n > 0 : X,, = Y,,} is finite almost surely as P is irreducible and
recurrent. By Proposition 3.12, we have lim,,_,. |P[X,, = 2] — P[Y,, = ] = 0], i.e.

lim |P[X, =2 —P[X,; =z]| =0.

n—oo
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Proof of Theorem 3.15. We distinguish two cases, depending whether P is transient or recur-
rent.

Case 1: Assume P transient. Let X,Y ~ MC(y, P) independent. Fix z € S, since (z,7)
is transient, the last visit L = max{n > 0: (X,,Y,) = (z,z)} is finite almost surely (by the
Dichotomy Theorem). Hence,

n—0o0

Case 2: Assume P is null recurrent. Fix 2 € S and € > 0. Since x is a null recurrent state, by
Theorem 2.4 (density of visits), we can choose k such that

S
—_

) <e

| =

Il
o

7

For every n > 0, define the stopping time H = min{j > n : X; = x} ( representing the first hit
time of z after time n). Since the chain does not visit « between time n and time H, we have

k— k—1
1 (stmp) 1
1=0

1=0

In order to conclude, we use Lemma 3.16: for n large P, [X, = x| is closed to the average
%Zle P, [X,4; = z], which is small by the equation above. More precisely, for every n > 0,

we have
L&
Py lXn = EZPN[
1Zzl 1
SE;P“[X”:x]_PH[XnH:xﬂ"’EZ;Pu[Xnﬂ:x].

n—00

Since P is irreducible and recurrent, Lemma 3.16 concludes that

limsupP, [X, = z] <e.

n—oo



38 CHAPTER 3. CONVERGENCE TO EQUILIBRIUM

3.9 Monte-Carlo Markov Chain: Hardcore model

Reference: see Chapter 7 of [2].

We consider a 8x8 square grid, i.e. the graph G = (V,E) where V = {1,...,8}* and
E ={{z,y} CV : ||z —y|1 = 1}. In the hardcore model, particles are placed randomly on
the vertices in such a way that

e there is at most one particle on each vertex; and
e no two neighbours are occupied by a particle.

Formally, a configuration is an element ¢ € {0,1}". Such a configuration associates to each
vertex v € V a value {(v) = 0 or &(v) = 1, where {(v) = 1 is interpreted as the presence of
a particle at v. Such a configuration is called admissible if min({(v),&(w)) = 0 for every edge
{v,w} € E.

Question: How to simulate Y, a uniform random variable in

S ={¢ec{0,1}V : ¢is admissible}?

We will construct a Markov chain on S with stationary distribution =, the uniform distri-
bution on S. We start on a fixed admissible configuration Xy = n € S. For every n > 0, we
define X,, 1 from X, as follows:

e Pick a vertex v uniformly at random in V.
e If a neighbour of v is occupied in X,,, we do nothing and set X, ,; = X,,.

e If none of the neighbours of v is occupied in X,,, then we set X,,1(v) to be the result of
a fair coin, and we leave all the other values unchanged: we set X, 1(w) = X, (w), for
all w # v.

Proposition 3.17. For every £ € S we have

lim P[X, = ¢] = —-.

n—o0 |S]
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Proof. The chain defined above is a Markov Chain with transition probability P defined by

if ¢ and ¢ differ exactly at one vertex,

Pews =1 =57 €=,

0 otherwise.

where k = k() is the number of admissible configurations ¢ that differ from £ exactly at one
vertex. The definition of p¢ 4 is symmetric in £, € S, therefore p¢ , = py. ¢, which implies that

1 1
V&Y ES Py = ToiPue
’S‘ & |S| V.6

This implies that the uniform distribution is reversible, and therefore stationary.
Furthermore, the chain is irreducible (one can check that 0 <> £ for all £ € S) and aperiodic
(because pg ¢ > 0 for every &). See Exercise 6.5 for more details. The proof follows by applying
Theorem 3.14.
O
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Chapter 4

Renewal Processes

Framework: ({2, F,P) probability space. In the whole chapter, we fix
Ty,T5,...1i.d. random variables on R
satisfying P [T; = 0] < 1. We write
w=EI[T] € (0, 0] and F(t) =PI <t

for the expectation and the distribution function of T}, respectively.

4.1 Definition

Definition 4.1. Let ¢ > 1. The random variable T} is called the i-th inter-arrival time,
and we define the i-th arrival time (or i-th renewal time) as

1Si=T1+---+T.

Definition 4.2. The continuous time stochastic process (N;):>¢ defined by

Vti>0 N, = lekgt
k=1

is called the renewal process with arrival distribution F'.

In words, N; counts the number of renewal times in the interval [0, ¢].

41
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Examples:
(i) 71 =1 a.s. ("deterministic case”)

(ii) T1 ~ U(0,1).

4.2 Exponential inter-arrival times

If the inter-arrival times are exponential random variables with parameter \, then the renewal
process N is called a Poisson Process with parameter \. Such process will be analyzed in more
depth in Chapter 7. The name comes from the distribution of N, which is a Poisson random
variable, as stated in the following proposition.

n —

3 Lan® *

2 &———oO N

1+ ——0 .

0f e———o |
\ \ \ \ \ \

Proposition 4.1. Fixz A > 0 and assume that
Ty ~ Exp(})

(i.e. F(t)=1—¢e™ fort>0). In this case, for every fived t > 0, we have

Nt ~ POlS()\t)

Proof. We prove by induction on n, that

)™
Vi >0 P[N;=n|= (HR e M (4.1)



4.3. BERNOULLI INTER-ARRIVAL TIMES 43

For n = 0, we have N; = 0 if there is no renewal before time ¢, therefore,
P[N, = 0] = P[T} > t] = e ™.

Let n > 0 and assume that (4.1) holds. Fix ¢ > 0. There are n + 1 renewal before time ¢ iff
Ty < t and there are exactly n renewal times between 7} and t. By conditioning on 7}, and

using independence, we obtain

P[Nt:n+1]:IP’[T1<t,T1—I——|—Tn+1§t,T1++Tn+2>t]

Pls<t,s+Tp+ -+ Ty <t, 5+ Ty + -+ Thpo > t]he ds

Il
— S S—

¢
P[Ty+ -+ Ty <t —5,To+ -+ Tpyo > 1 —s]he ds

t

P[N,_, = n]Ae *ds

By the induction hypothesis, we obtain

FAE—s)"

n!

PN, = n+1] = AeMds — [_

S~

4.3 Bernoulli inter-arrival times

In this section, we give another example where the law of N; can be computed explicitly.

Proposition 4.2. Fiz a >0 and 0 < 8 < 1 and assume that

T a  with probability 3
' 0  with probability 1 — 3

(i.e. Ty (o) aZ, where Z ~ Ber(f3)). In this case, for every fived t > 0, we have
(lass) [t/a]
No= Xo+ ) (1+ X)),

i=1

where the X;’s are i.i.d. geometric random variables with parameter [3.
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Proof. The sequence T}, Ty, . .. is a random sequence of numbers taking values in {0, a}. Since
T; = a with probablity 8 > 0, we know (by Borel-Cantelli Theorem) that the value o appears
infinitely many times. Define X, € {0,1,2...} to be the numbers of 0’s before the first «, and
for every ¢ > 1, define X; as the number of 0’s between the ¢-th and the ¢ + 1-th a. Notice
that Xy, X1, ... is an iid sequence of geometric random variables with parameter 5. Indeed, by
independence, for every ¢ > 0 and every ky, ..., k; we have

]P)[XO - kO? oo 7Xi - k%] = H]P)[Téj-l-l - 07 v 7Tfj+kj—1 - 07T€]’+k)j - Oé] = H(l - B)kjﬂ'
7=0

=0

where we set £y =0 and ; = ky +--- 4+ k; for j > 1.
By definition, the number of renewal times before time ¢ is exactly the number of terms
in the sequence (11,75, ...) before we see |t/a| times the value a. Following the definitions

above, we get
t/a]
N,o=Xo+ > (1+X).

=1

4.4 Basic properties

Lemma 4.3 (Monotonicity). Let (T});>1 be a sequence of iid random variables satisfying
TZ-/ <T, a.s.

Then the renewal process N' define by N; =3 o, L7y .q1y<t Satisfies
N{ >Ny a.s.

for every t > 0.

Proof. Let k > 1and t>0. If Ty +--- +T), <t then 77 + --- + T} <t a.s. Therefore,

Ipyoqn<e < lojqm<e as.

The results follows by summing the equation above over all k > 1. O]
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Proposition 4.4 (Basic properties). The renewal process N satisfies the following proper-
ties. Almost surely,

(i) t = N, is non-decreasing, right continuous, with values in N and

Proof.
(i) Write Q1 = QN (0, 00) for the positive rational numbers. We have

PIT >0 =P | J{Ti >a}] = lim P[T} > .
acQy a€Q4+

We have
> PIT; > a] = .

Therefore, by the Borel-Cantelli lemma, P [A] = 1, where
A ={w : T;(w) > «a for infinitely many i} .

For every w € A, lim,,_,o, S, (w) = 0o, and therefore

t— Ny(w) = Z 1s, ()<t

k>1
is a non-decreasing function with values in N.

(ii) All the inter-arrival times T3, T, ... are finite almost surely. Therefore, all the renewal
times S1, 99, ... are finite almost surely. When this occurs, we have

lim N; = lim g 1lg, <t = +o0.
t—o00 t—o00 o1 -

4.5 Exponential moments
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Proposition 4.5 (Exponential moments). There exists ¢ > 0 such that

14t

¥t>0 E[eM] <et

Proof. As in the proof of Proposition 4.4, we can pick a € (0, 1] such that P [T} > o] > 0. For

every ¢ > 0, define
T/ = &1Ti2a-

2

We have T} < T; a.s. and (7}) are i.i.d. random variables with

«  with probability 3
0 with probability 1 —

T =

where § =P [T} > a] > 0. Define the renewal process N’ by

/
Ny = E Ly <i

k>1
By Proposition 4.2, we have that
() 1]
N ="="Xo+ ) (1+X),
i=1

where (X;) are geometric random variables with success parameter 8. For ¢ > 0 such that

(1 —pB)e® < 1 we have
E[eC(HXi)] = e —6 <e°.
1—(1—p)e
Hence, we can choose ¢ > 0 small enough such that E[ec01+X)] < e%.
independence we obtain for all t > 0

Using this bound and

]
E |:€CN{:| < H]E [66(1+Xi)] < e%(pré) _ ea:rt'
=0

This completes the proof since we chose a < 1. O

Remark 4.6. In particular, for every t > 1, we have

Ny 7 (Jensen)

E [ecT < E [GCNt}% <e

2
c

and for every k > 1

N\l K




4.6. LAW OF LARGE NUMBERS

4.6 Law of Large Numbers

47

Theorem 4.7 (Law of Large Numbers). Recall that u = E [T1]. We have

Remark 4.8. If p = oo, then lim;_, % =0 a.s.

Proof. By the strong law of large numbers (for non negative random variable), we have

lim = lim =4 as.
Notice that for every ¢
Sy, <t < Sny1-
Therefore,
SN, < t SN, +1
N,+1~ N+1 N +1°
—— S~——
—u —p
14N,

Where the convergences are almost sure. Therefore lim; o, =

i Ny 1
limy oo 5t = o a8

1

=4 as., which implies that

]

Theorem 4.9 (Central Limit Theorem). Assume that E [T?] < co. Write p = E[T3], 0% =

Var(Ty). Then, assuming o > 0, we have

N, — L
Li AR, 1)

s
o)L T
n

Proof. See exercises.

4.7 Renewal function
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Definition 4.3. The renewal function is the function m : R, — R, defined by

V>0 m(t) =E[N].

Remark 4.10. Equation (4.2) applied to k = 1 implies that m(t) < oo for every ¢t > 0.

Interpretation: The set {57, Sa,...} of renewal times defines a set of random points in R,
and
m(t) = E [Number of points in the interval [0, t]] .

Remark 4.11. For the Poisson process with parameter A, we know (by Proposition 4.1) that
N,; ~ Pois(At). Therefore, the renewal function is linear in this case:

V>0 m(t) = M.

Proposition 4.12. The renewal function m is non-decreasing, non-negative, and right

continuous.

Proof. Since N; is non-decreasing in ¢ and non-negative almost surely, the expectation m(t) =
E[N,] also satisfies these two properties. For the right continuity, observe that almost surely
Nits — N: } 0 as s | 0. Therefore m(t + s) — m(t) — 0 by monotone convergence. ]

4.8 Elementary renewal theorem

Theorem 4.13 (Elementary Renewal Theorem).

Proof. We already have lim;_,, % = % a.s. (by Theorem 4.7). Furthermore, we have seen that
sup;>; E [(%)2] < o0o. Hence % is uniformly integrable and
N,
lim m = lim E [Tt} =K {lim —} =

t—oo t—o0
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4.9 Lattice distributions

Definition 4.4. We say that F is lattice if there exists a > 0 and such that

P[T} € aZ) = 1. (4.3)

In this case the span of F' is defined as the largest a > 0 such that (4.3) holds. Otherwise, we
say that F' is non lattice.

4.10 Blackwell’s renewal theorem: lattice case

Theorem 4.14 (Blackwell’s Renewal Theorem). Assume that the law of T is lattice with
span a, then the sequence (m(ai));en Satisfies

lim m(a ) —mla- (i —1)) = %

Proof. Via Markov Chains, see exercises. O

4.11 Blackwell’s renewal theorem: non-lattice case

Theorem 4.15 (Blackwell’s Renewal Theorem). Assume that the law of Ty is non-lattice,
then for all h > 0

: h
tlg(r)lom(t +h) —m(t) = s

Proof. Admitted. m
Remark 4.16. Blackwell’s theorem is “stronger” than elementary renewal theorem:
L]

m(t) _m([t]) 1 (Blackwell) 1
T —m;m(k)—m(k:—l) =
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Chapter 5

Renewal Equation

Framework: ({2, F,P) probability space. In the whole chapter, we fix
Ty,T5,...1i.d. random variables on R
satisfying P [T; = 0] < 1. We write

p=EI[Ti] € (0, 0] and  F(t)=P[Th <t].

5.1 Lesbesgue-Stieltjes measure

There exists a

Theorem 5.1. Let g be a right continuous non-decreasing function on R, .

unique measure vy on Ry such that
VE> 0 v,([0,2]) = g(t).

Proof. Admitted (follows from Caratheordory’s extension Theorem).

Notation Let g be a right continuous non-decreasing function on Ry. For h € L'(y,) or h

measurable and non-negative, write

/hdg:/ h dv,.
R R,

Example 1: F'is a right continuous non-decreasing function on R, and vz corresponds to the

law of T: for every B C R, measurable,
VF(B> = ]P)[Tl € B]

51
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Furthermore, for every h measurable bounded, we have

/ hdF = E[h(T})].

Example 2: Proposition 4.12 states that the renewal function m is right-continuous non-
decreasing. The corresponding measure v, has the following interpretation: for every B C R,

measurable,
Vm(B) = E [Number of renewals in B].

Furthermore, for every h measurable bounded, we have

/ﬂhhdm:E{Zh(sn)}.

k>1

5.2 Convolution operator

Definition 5.1 (Convolution operator). Let G be a right continuous non-decreasing func-
tion on R,. Let h: Ry — R measurable be such that for all £ > 0 fot |h(t — s)|dG(s) < o0
or h measurable non-negative. For every t > 0, define

(h+G)(t) = /0 h(t — $)dG(s).

Remark 5.2. If X,Y are two independent random variables on R, with distribution functions

Fx, Fy respectively, then
Fx+y = FX * Fy.

The proof is left as an exercise.

This is useful in our context to express the distribution of the n-th renewal time S, =
Ty+...T, for n > 1. Using the remark above and an induction, we can express the distribution

function of S,, as a n-fold convolution:
Fs, = Fry 41, = F™,
where we write F*" = F ... x F.
—_—

n times
This leads directly to the following expression of the renewal function.
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Proposition 5.3. For everyt >0

m(t) =) F*(t).

k>1

Proof. For every t > 0 , we have

m(t) =E

> 1Sn<t] =Y P[S, <t]=> F"(t).

n>1 n>1 n>1

5.3 Renewal equation

Definition 5.2. Let h : Ry — R be measurable locally bounded (i.e. Vt > 0, hljpy is

bounded). ¢g : R, — R such that for all ¢ > 0 fot lg(t — s)|dF(s) < co. We say that g is a
solution of the (h, F') renewal equation if

Vit >0 g(t) =h(t) + /tg(t — s)dF(s),

ie.g=h+gx*F.

Proposition 5.4. m is a solution of the (F, F') renewal equation, ie. m = F'+m x F.

Proof 1.

m=Y Fi=F+Y Flbypnoemes py (Z F*“—l)) «F.

>0 1>1 i>1
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Proof 2. For t > 0, we have

m(t) =E | 1] =P[L<t+E |} 1]
k>0 k>1 5
5
t
(Fubini) (Indep.)
() " S B ramed " Y [ B Lene ] 4
0

k>1 k>1

= /Otm(t — s)dF(s).

5.4 Excess time

For t > 0, define
Et - SN¢+1 - t,

the time left to wait until next renewal.

Proposition 5.5 (Excess distribution function). Fiz x > 0. The function e, defined by
e.(t) =P [E, < x| for allt > 0 satisfies

er = hy +e,xF,

where h,(t) = F(x +t) — F(t). (i.e. e, is a solution of the (h,, F') renewal equation).

Proof. Fix x,t > 0. We can separate e,(t) into two parts, one for the probability if there has
already been a renewal before time ¢, and one if that hasn’t occurred:

ee(t) =P [ >t, B <z]+P[T1 <t, B <z
Now we analyze each term separately. The first term can be directly expressed as
P, >t,Ty <t+az]=F(t+a)— F(t).

For the second term, we exploit the renewal structure of the process. Observe that FE; is
measurable with respect to (71, T, ...): by definition, we have E; = ¢,(T}, T, .. .), where

Pty ta,...) = Z Loy tottn <ty ottnpa>t(tn o +tngr — 1)

n>0
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Notice that for every s < t, ¢.(s,ta,...) = ¢y_s(t2,...). Using this observation, we find

]P[TlgtaEth] IED[ <t¢t(T17T27)§x]

IP [01(s, Tn,...) < x] dF(s)

IP’ [b1—s(To,...) < x]dF(s)

I
Nk%

ex(t — s)dF (s) = (e, x F)(t)

Thus e, (t) = h,(t) + (e * F)(t). O

5.5 Well-Posedness of the Renewal Equation

Theorem 5.6. Let h: Ry — R be measurable, locally bounded. Then there exists a unique
g : Ry — R measurable, locally bounded, solution of

g=h+gxF

gwen by g = h+ hxm.

Intuitive Proof. Assume g is a solution, then we have

g=h+gxF
=h+ (h+g*F)*F

D hs« Pt hse F2 4 hs I+
=h+h*m

O

Rigorous Proof. Existence g = h+ h*m is measurable and locally bounded, because h is. We
have

h+g*«F=h+(h+hxm)x*F
=h+hx(F+mxF)=g.
~———

=m
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Uniqueness Let g1, go be two solutions of the (h, F') renewal equation. Then g3 — g5 =
(91 — ¢2) * F and therefore, by induction, g; — go = (g1 — g2) * F*" for every n > 1. Fix t > 0.
For every n > 1, we have

t
01(8) — go(8)] = SSmml—wy/dFm@»
0

[0,¢]

‘A@—mw—ﬂﬁw@

Where we can see the integral term is equal to P [T7 + ...+ T, < t] which converges to 0 as n
tends to infinity. Hence g; = ¢». O]

5.6 Discussion about the asymptotic Behavior

From now and until the end of the chapter, we assume that I’ is non-lattice.

Question: Let g be the solution of the (h, F) renewal equation, what is the asymptotic behavior
of g(t) for t — oc0?

A first answer: We start by considering the case h = 1j,4 for 0 <a <b. Let g=h+hx*m
be the solution of the (h, F') renewal equation. For every ¢ > b, we have h(t) = 0, hence

g(t) = /0 h(t — s)dm(s)
T h(s)dm(s)
t—b
Zn(t—a)—m(t—b).

(Blackwell) ¢, _
= bTa

Hence
1

lim g(t) = — /000 h(s)ds.

t—o0 v

How does this generalize?

Idea: Extend to simple functions ) A1, s, (this is straightforward), and then to a more
general class of measurable functions. A good framework for this extension is to consider
directly Riemann integrable functions.

5.7 Directly Rieman integrable functions



5.7. DIRECTLY RIEMAN INTEGRABLE FUNCTIONS 57

1.2

1 [ — — a |

0.8+ 2

0.6 :

04} :

0.2 :

00 1 2 3 4

Figure 5.1: An integrable function which is not dRi.

Definition 5.3. h: Ry — R, measurable, h is called directly Riemann Integrable (dRi) if
Yo > 0 0 sup h<oo.
kzzo [k6,(k+1)6]
and
lim ¢ sup h=1limd inf h.
0—0 =0 [k, (k+1)8] 0—0 —o [kd,(k+1)4]
h:R; — Ris dRi if and only if hy = max(h,0) and h_ = max(—h,0) are dRi.

Remark 5.7. If h is dRi, then it is integrable. The converse is not true: The function h =
> k>0 Ligkr2-+] is integrable, but is not dRi.

Proposition 5.8. Let h: R, — R, be measurable.
Assume that h is continuous at a.e. t € R and there exists H non-increasing such that
0<h<H andfoooH<oo. Then h is dRi.

Proof. See Prop. 4.1 in [1].
[

Remark 5.9. In particular if h is bounded, continuous at a.e. t € R, and vanishes outside a
compact set, then A is dRi.
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5.8 Smith key renewal theorem

Theorem 5.10 (Smith Key Renewal Theorem). Let h be dRi, F' non-lattice. Then g =
h + h xm satisfies

lim g(t) = 1 /OOO h(u)du.

t—o00 )

Remark 5.11. The case h = 1 corresponds to the Blackwell Theorem.

Proof. Since h is dRi we have

Z sup |h| < oo.
L Lek+1]

Hence h(t) — 0. Therefore it suffices to prove
t 1 t
lim [ At — s)dm(s) = —/ h(u)du.
t=o0 Jo K Jo

Let 6 > 0 such that F'(6) < 1.
Assume h = Zkzo Ck Lk (k+1)5) With ¢ > 0 and Zkzo cr < oo. By monotone convergence

h(t = s)dm(s) = Y cm(t — ko) —m(t — ks — )]

k>0

ha(t)

Observe that for every u > o

1> F(u) =m(u) — /Ou F(u—s)dm(s) = /Ou(l — F(u — s))dm(s)
> /“6<1 — F(u—s))dm(s) > (1 = F(0)) (m(u) — m(u—19)).

—_————
>1-F(5)
In the first equality, it was used that m is the solution of the (F, F') renewal equation. Hence
for every t and every k

hi(t) < 1_—;(5),
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by distinguishing between ¢t — kd > § and t — kd < §, and using that m is non-decreasing,
vanishing on (—o0,0). By dominated convergence

lim > " he(t) =) lim hy(t) .
70 ko0
(Blackwell)
= Ck;
Hence limy fg h(t — s)dm(s) =3 1, Ck% = ifooo h(u)du.
Now assume h > 0 dRi. Let § > 0 such that F'(0) < 1. Write

hs = B
- kzm([’f&gl?ﬂ)a] )L iko,(k+1)3)

h5 = Z( sup h)l[k57(k+1)5).
k>0 [k8,(k+1)d]

We have for every t

/Oth(t—s)dm(s) < /Otﬁ(;(t—s)dm(s) = %/Otﬁg(u)du.

Hence

lim sup /Oth(t — s)dm(s) < 1 /Rﬁg(u)du.

t—00 1%

/RE(;(u)du—/Rh(u)du

where the limit is due to h being dRi. We can let ¢ tend to 0 in the equation above (with
lim sup) to obtain

Since

<36 (Rs(k6) — s (ks)) %0,

k>0

lim sup /0 Cht — s)dm(s) < L /R h(u)du,

t—o00 ,U

and equivalently

lim inf /0 Wt — s)dm(s) > L /R () du.

t—o00 1%

E/Rh(u)du < 1iminf/oth(t—s)dm(s) < limsup/ot h(t — s)dm(s) < l/Rh(u)du.

ILL t—o00 t—00
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5.9 Application to the excess time

Assume that ¢ < co. Let E} be the excess time (time until next renewal) and e, (t) = P [E; < z].
What is lim; o €,(t)? We know that e, = h, + e, *x I, where h,(t) = F(t + z) — F(t).
Remark 512. p=E[T1] = [P [Ty > t]dt

With this we have that h,(t) <1— F(t) = P[T} > t], and 1 — F(t) is non-increasing in ¢ and
continuous a.e. (because it is the difference of two monotone functions).

/ PIT, > f]dt = E [T}] = p < oo.
0
Thus (by the proposition) h, is dRi. Now we can apply the theorem and get that

1 [ 1 [
lim P [E, < 2] = —/ o (1)t —/ Flt +2) — F(t)dt,
t=o0 M Jo HJo

with F(t + z) — F(t) = E [11,ett44)], we find that the limit is equal to

1/°° 1 UOO ] 1 [/T ] T, Th<uz
- E1 J] dt = —E L —omy | dt = —E dt| =
0 /g [ Ti€(t,t+ ﬂ 7 ; te[T1—x,11) [ (71 —5,0) v T >

Thus for ¢ large: P [E; < x] ~ iE [min{7}, z}].
Remark 5.13. G(x) = LE [min{T},x}] is the delay distribution in the proof of Blackwell’s

R
Theorem.



Chapter 6

General Poisson Point Processes

Reference Lectures on the Poisson Process (Penrose), Poisson Processes (Kingman)

Framework:
o (Q, Fq,P) probability space.
e (E,d) a Polish space (separable, complete, metric space).
e & Borel o-algebra of F.

e 1 sigma-finite measure on (E, ), i.e. there exists a partition

E=|JE;

ieN
such that each F; is measurable and satisfies pu(FE;) < oo.

Examples:

() E = {0}, 1= 0.

(ii) £ =Ry, p= X-Lebg, “Lebesgue Measure on R,.

(i) B =R?, p(dr) = Le *Fdz *Gaussian’
Goal: We wish to define a random set of points on (E,E) where

"number of points around z” & p(dx).

In particular we wish to define a random variable: €2 —’set of points in a general state space

E’ (ex: R?% [0,1]?, a manifold, Z, a space of function,etc...)

61
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6.1 Representing Points?
First question How can we represent points on £ = R, mathematically?
(i) 'Time point of view’, ie T}, Ty, ... where T; = time between the (i — 1)’th and i’th point.
(ii) Cadlag formulation with values in N. N; = number of points in [0, ¢].
(iii) A set of points S = {51, Ss,...}
(iv) Measure M : B(R,) — N with M(A) = number of points in A.

(i) and (ii) are specific to R, and to not extend to general space. (iii) and (iv) are both
possible. We will prefer (iv) because it allows us to deal with multiplicity.

Notation We consider the measurable space (M, B(M)), where

M = {sigma-finite measures n on E such that VB € £ n(B) € NU {+o0}}|,

and B(M) is the o-algebra generated by the sets
{ne M:n(B) =k}

for B C F measurable and k € N.

Proposition 6.1 (Representation as Dirac Sum). Let M., = {n € M : n(F) < oo},
there exist measurable maps 7 : Moo — N and X; : Moo — E such that

7(n)

Ve Mase n=_ bx,m)-

1=0

Remark 6.2. Thus n corresponds to a collection of points { X7, ..., X, }.

Notation: For every k > 0 we write M, for the set of measures n € M with total mass
n(E) = k.

Lemma 6.3. Let k > 1. There exists a measurable map Z : My — E such that

Ve M, n({Z}) > 1.
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Proof. Fix k> 1 and Y = {y1, 42, ...} at most countable and dense in E. We will construct by
induction Y7, Y5, ... some measurable maps from M, to ) such that for every n > 1

o( N B ) =1,

1<m<n

for every n € M.
Construction of Y;: Since the set ) is dense in E, we have E = (J,., B(y;,1). Therefore,
for every n € My, by the union bound we have 1 < n(E) < > .., n(B(y;,1)). We can thus
define -

Yi(n) =vy;, where iy = min{i : n(B(y;, 1)) > 1}.

This define a map Y; : My — ), which is measurable because for every j

Y ) = {n : 0(B(yi, 1)) =0y n{n : n(B(y:, 1)) = 1}.

1<J

Construction of Y,: Let n > 1 and assume that Y7,...,Y,,_; have already been constructed.
Let n € My, and C' = (,ncpn_y B(Yin(n), 7). We have

1 <n(C) SZH(CHB (y%»

>0

Define Y, (n) = y;, where i, = min{i : n(C' NB(y;, =)) > 1}. As above, Y;, is measurable.

The sequence (Y,),>o constructed above is a Cauchy sequence (indeed for every n > m
B(Y,, 1) N B(Y;,, =) # 0, hence by the triangle inequality d(Y;,Y;,) < 2). Define Zj41(n) =
lim,, o Y, (1) (Zg, is measurable as a simple limit of measurable functions). Furthermore
{Zkna (1)} = Moo B(Va, 2) and therefore 5({Zy1 (n)}) > 1.

[l

Proof of Proposition 6.1. We have M = J;—q Mx where My, = {n: n(E) = k}. We prove
by induction on k& > 0 that for every k > 0 there exist Z1,..., 2, : M, — E measurable such
that

k
Vn € My 77:2521"

=1

For k = 0 there is nothing to prove. Let £ > 0 and assume that the property holds. Let n € M
such that n(E) = k + 1. By Lemma 6.3, there exists Zy.1 : M1 — E measurable such that
n(Zk+1(n)) > 1. Define

n'=n0—= 02,
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(1’ is measurable in 7). Note that '(E) = k, and therefore ' € M. By induction, there exist
Z1(n')s -+, Z1(n') such that n' = 0 + ...+ dz. Setting Zi(n) := Zj(n') for i <k, we obtain

k+1

n= Z 5Zi(7l)'
=1

6.2 Point process

Definition 6.1. A point process on (F,E) is a stochastic process
M = (M(B))Beg

with values in NU {oco}, such that M € M a.s.

Interpretation: For fixed B, the random integer M (B) intuitively represents the number of
points in B. A point process indicates how many points there are in each region B of the
space. The condition M € M a.s. ensures that all the numbers of points in different regions
are compatible with each other.

Remark 6.4. In the definition above, we make a slight abuse of notation and also write M for
the random mapping M : B — M (B).

As usual in probability, the underlying parameter w € € is implicit. Formally, a point
process is a collection M = (M,,(B))yeq,pes With values in NU {oo} such that

e for every fixed B, w — M,,(B) is measurable.
e for almost every w € 2, the mapping M, : B — M,(B) is an element of M.

Remark 6.5. One can check that the definition above is equivalent to saying that the mapping
w — M, is a random variable with values in M.

Examples of Point Processes

e M =0 a.s. (This corresponds to the random set S = () a.s.)

e £ =10,1], X random variable on [0,1]. M = dx is a point process. (This corresponds to
the random set S = {X} a.s.)

e Xi,...X, iid. random variable on [0,1], N = dx, + ...+ dx, is a point process. (This
corresponds to the random set S = {X1,..., X, } a.s.)
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6.3 Poisson Point Processes

Convention X ~ Pois(co) if and only if X = oo a.s.

Definition 6.2. A Poisson point process with intensity p on (F, &) (ppp(n)) is a point
process M such that

(i) For all By,..., By C E measurable and disjoint, M (By), ..., M(By) are independent.

(ii) For all B C E measurable, M (B) has law Pois(u(B)).

Remark 6.6. Let B C E measurable. Item (ii) includes the case p(B) = oo: it is equivalent to

~ Pois(u(B)) if u(B) < oo,
#(B) {: +00 a.s. if u(B) = oo.

In particular, by applying the definition to B = E, we obtain that the total number of points
in the space 7 := M (F) is a Poisson random variable with parameter p(FE): we have

<ooas. if p(F) < oo,
-
=400 a.s. if u(E) = oo.

Remark 6.7. Thanks to Item (ii), we can calculate the average number of points in a region.
For every B C E measurable, we have

(on average, there are p(B) points in B).

6.4 Representation as a proper process

Theorem 6.8. Let M be a ppp(p) on (E,E). Let T = M(E) (the total number of points
in E'). There exist some random variables X, € E, n > 0 such that

M = Zi;éXn a.s.
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Remark 6.9. The theorem gives a “random set” interpretation of Poisson process. We have a
correspondence:

M € M rand. counting measure <+— S = {Xj,..., X} random set
M(B) <+— |SN B|, number of points in B (with multiplicity).

Proof of Theorem 6.8. Let (E;);en be a partition of E such that u(FE;) < oo for every i. The
process M; := M( - N E;) takes values in M_.,. Hence the proposition in the previous section
ensures that there exist some random variables 7%, Zfl), .., 7% such that

o)

M; = E (5Z](_¢) a.s.
i=1

Use that M = > ° M,;, and a reordering of the terms in the sums, we obtain the desired
result. O]

Question Does there always exist a ppp(u) on E?

6.5 Existence: Spaces with finite measure

Assume pu(E) < oo.

Proposition 6.10. Let Z, (X;);>1 be independent random variables.
7~ Pois(u(E)), X~ M)

Then M = Y7, 8x, is a ppp(u) on E.

Proof. Let k > 2 and By, ... By_1 C E be disjoint and measurable. Set By = E '\ <ﬂf:1 B,-).
Fix ny,...,n; € N arbitrary. Set n =ny + ...+ ng, and define for each i € {1,... k},

n
}/i = E ]lXjEBi
Jj=1
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. w(B1) H(Bk))
Pp(E) T w(E)

Observe that (Y7, ..., Ys) is a multinomial random variable with parameters (n
independent of Z. We have
P[M(By) =ny,...,M(Br) =ni] =P[Z =n,Y1 =nq,..., Y, = ngl
_ B iy (mBo)’“ . (MBk))”’“

n! nyl-ong! \ p(E)

T H(B)"
_ _ _ ¢ —u(Bs)
P[M(By) =ni,..., M(Bi_1) = nj_1] = 11 e :
Hence M(By),..., M(By_1) are independent Pois(u(B;)) random variables. O

6.6 Superposition

Lemma 6.11. Let A = > ° Ni, A > 0. (X;)is0 independent random variables with
X ~ Poiss(\;) for every i > 1. Then the sum X = 2, X; is a Poiss(\) random variable.

Proof. See Exercises. O

Theorem 6.12. Let M;,i > 1 be a sequence of independent ppp(p;) where p; and p =
Yoo, wi are sigma-finite measures. Then M = "2, M; is a ppp().

Proof. We first check that M is a point process. For every B C E measurable, M(B) =
> M;(B) is a well defined random variable (as a sum of nonnegative random variables). M is
a measure almost surely (as a sum of of measures). Let (E,)nen be a partition of E such that
p(E,) < oo for every i. For all n,

EIM(E,)] = Y EMG(E)] = Y alEn) = u(Ey) < .

Hence M(E,) < oo a.s. for every n € N, which implies that M is a o-finite measure almost
surely.
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For B C E measurable,
(d) .
M(B) = M;(B)= " Pois(u:(B)).

By the lemma, M (B) is a Pois(p(B)) random variable. Finally for By, ..., By C E measurable
and disjoint (M;(B;));cx 1<;<) are independent random variables. Therefore

M(B;) = Z M;(By),...,M(By) = Z M;(By)

are independent by grouping. O]

Theorem 6.13. Assume that p is a sigma-finite measure on (E,E), then there ezists a
ppp(p) on E.

Proof. p =Y u; where p1,(E) < oco. Let (M;) be independent Poisson processes, where M,
is a ppp(;). By superposition, M = > M, is a ppp(u). O]

6.7 Law of the Poisson process

Let M be a ppp(u) on E, its law Py, is a probability measure on M.

Proposition 6.14. Let M, M’ be two ppp(u) on (E,E) then Py = Pyy.

Remark 6.15. Py = Pyp if and only if for all A C M measurable Py (A) = Py/(A) if and only
if for all A C M measurable P[M € A] =P [M' € A].

Proof. Let By, B, C E measurable, ny,ny > 0. Define C; = B; \ By, Cy = B; N By, and
Cg - BQ \ Bl.

]P)[M(Bl) :nl,M(Bg) :TLQ] == Z P[M(Ol) :TLl,M(OQ) :mQ,M(Og) :m3]

mi+mo=ni
ma+m3=n2

— S PIM(Cy) = my, M'(Ch) = ma, M'(Cy) = my]

mi+ma=ni
ma+m3=nz

=P [M/(Bl) =Ny, M/(BQ) = ng]
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By By

Where the second equality holds as the C; are disjoint. Equivalently, for all By,..., By C E
measurable

P[M(Bl) = nl,...,M(Bk) = nk] :P[M/(Bl) = nl,...,M'(Bk) = nk] .

Therefore Py(A) = Py (A) for every set of the form A = {n: (n(B1),...,n(By)) € K} for
By, ..., By C E measurable and K C N¥. Such sets for a 7-system and generate B(M). Hence,
by Dynkin’s lemma, (*) holds for every measurable set A C M measurable. O

6.8 Restriction

Notation If v is a measure on E, C' C E measurable, then we write vo := v(- N C) (the
measure restricted to C).

Theorem 6.16 (Restriction). Let Cy,Cy, ... C E measurable and disjoint. If N is a ppp(u)
on E, then N¢,, Ne, ... are independent ppp with respective intensities oy, ficy, - - -

Proof. Let Cy = E \ (U;»1C;) (possibly empty). This, way we have a partition £ = (J;5,C;
Let N§, N7, ... independent ppp with respective intensities ¢y, ficy, - - .. By superposition N’ =

Zizo N is a ppp() (indeed, p = zizo tey)
For every B C E measurable and j > 0

N'(BNCj) =) N/(BNCy)
>0 e
=0 a.s. if i#j

= Nj(B) a.s.
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Hence Néj = Nj as. Let fi,..., fy : M — Ry measurable.

Hfi(Ni’)] = [[EHN)).

k

i=1

k

115V

i=1

E =E

i=1 =1

Hence N¢,, ..., N¢,

k

are independent ppp(uc; ). ]

6.9 Mapping
Let (F,F) be Polish space equipped with its Borel o-algebra. We consider a measurable map

T:FE— F.

Given a measure v on F, we write T#v for the pushforward measure of v under T' (defined by
T#v(B) = v(T'(B)) for every B € £).

Theorem 6.17. Assume that T#u is sigma-finite. Let M be a ppp(p) on E. The process

THM = (M(T™(B))ser

is a ppp(T#u) on F.

Proof. We first show that T#M is a point process on F. For every fixed B € F, we have
T~Y(B) € £ (because T is measurable). Therefore, T#M(B) = M(T~'(B)) is a well defined
random variable. Let M’ be the space of sigma-finite measures on (F,F) taking values in
N U {oco}. Notice that n € M = T#n € M’. Since M € M almost surely, we also have
T#M € M’ almost surely.

Let B € F. By definition, we have

T#M(B) =M (T~'(B)) ~ Poisson(u(T ' (B)) = Poisson(T#u(B)).
Let By,..., By be disjoint sets in F. Then, their pre-images T-'(B;),..., T '(By) are
disjoint measurable sets in £. The independence of the random variables
T#M(B1) = M(T~H(By)), ..., T#M(By,) = M(T~'(By))
arises from the fact that M is a Poisson point process. As before, we have that T#M (B;) =
M(T7Y(By)) ~ Poisson(u(T~1(By)) = Poisson(T#u(B1)), and the statement follows. O

Remark 6.18. If we decompose M =Y, dx, (as in Theorem 6.8), then T#M can be written
as T#M = "7, 0r(x,- Namely if the process M correspond to the point X, X5, ... then the
process T'#M corresponds to the image of these points 7'(X;), T'(Xs) . ..

Ezxample 6.1. E=R, F=7Z,T:FE— F;x — |z|, pn=L, T#u=1-|.
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6.10 Marking

Motivation Cars on a highway, at time 0 the position of the cars is a ppp(1) on R (that means
on average 1 car per kilometer of highway). We put an observer (Olga) at 0 on R.

Case 1: All of the cars have speed 50km/h, we want to study X = number of cars seen by
Olga in 1 hour. What is the law of X7 X ~ Pois(50).

Case 2: The cars have a random speed ~ U([50,100]). What is the law of X7 It may at
first seem complicated, but it is not!

Framework Let (F,F,v) Polish, probability space (’space of marks’).

Definition 6.3. Let M = )", dx, be a ppp(p) on E. (Y;);>o i.i.d. random variable with
law v independent of M. The Y -marked point process associated to M is the point process
on E x F defined by

Remark 6.19. X; corresponds to the position of the cars in Case 2, and Y; to their speeds.

Theorem 6.20. The marked process M is a ppp(p @ v).

Proof. See Section 6.13. O

6.11 Thinning

Theorem 6.21. Let p € [0,1]. Let M = >, 0x, be a ppp(p) on E. Let (Z;);>1 be
an infinite sequence of wid Bernoulli random wvariables with parameter p. The two point

MOI Z(SXZ and M1: ZéX’

i>1 i>1
Z;=0 X;=1

processes

are two independent ppp with intensities (1 — p)pu and pu respectively.
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Proof. The point process on E x {0, 1} defined by

M= Z 6(Xi7Zi)'

1>1

is Ber(p)-marking of M. Hence by Theorem 6.20, M is a ppp(u ® Ber(p)) on E x {0,1}. By
restriction, the two processes M | Ex{o} and M)| Ex{1}, are independent processes with intensities
(1 @ Ber(p))|pxqoy and (pu ® Ber(p))|gxq1y respectively. This concludes the proof since M is
the projection o fM|EX{j} on the coordinate j. O

6.12 Laplace Functional
Lemma 6.22. Let X be a Pois(\) random variable, for A > 0, then for all u > 0
E [e7**] = exp(=A(1 —e™)).

Proof. For every u > 0 we have

k
E [e‘“x} = Z %6_)‘6_“ = e exp(Ae ™).
— k!

]

Definition 6.4. Let M be a point process on (E,E), for every u : E — R, measurable define

Lor(u) = E [exp(— / u(x)M(dm)} |

Remark 6.23. Ly (u) is well defined. Indeed [, u(x)M(dz) = [, udN is a well defined random
variable.

We can interpret [ u(z)M(dz) as .

= *points of N’ u(z) with multiplicities counted.

Theorem 6.24 (Characterization via Laplace Functional). Let u be a sigma-finite measure
on (E,E). Let M be a point process on E. The following are equivalent

(i) M is a ppp(u),

(ii) For allu: E — R, measurable

Lar(u) = exp (— [E 1—6_“(”3),u(dx)>.
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Proof. Let u = Zle u;1p, for By, ..., By disjoint, u; > 0.
k .
exp (‘ > uz-M(BZ-)) () TTE [eve2)]
i=1 i=1
k
= [T (-atB)1 - ) =exp (= [ 1= utan)).
i=1 E

For general u > 0, consider (u,) of the form above such that u, 1 u. For every n

L) =exp (- [a=emuan)

(NST)LM(u)

—>exp<— fE(l—e—“(m))u(daﬁ))

Let Bi,..., By be disjoint. For all x = (x1,...,2,) with z; > 0. By applying (ii) to
u= Zle x;1p,, we have

where Y = (Y1,...,Y%) is a random vector of independent variables. Furthermore Y; are
Pois(u(B;)) random variables, since the Laplace transform characterizes the law we have

(law)

(M(By),...,M(By)) ="Y.

6.13 Proof of the marking Theorem

First we show that M is a point process. For every B C E measurable,

M(B) = H(Xi,Yi)GB .
;%/—/

measurable
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Let u: E x ' — R, measurable

For m < oo, we have
1,—,exp (— Z u( Xk, yk)>] v(dyy) ... v(dyy)

- / / E
F F k=1
H\< F v

k=1

e—v(Xg)

where v(z) = —log ([, e “@¥v(dy)) > 0. Hence for all m < oo, we have

1,—,,exp <— Z v(xk)>] )

Equivalently and using monotone convergence, the equality above also holds for m = oo.

Therefore
Ly(u) = Z E|1- mexp( Zv ) exp (—Zv(X;Q)]

meNU{oo} k=1

— Ly(v) = exp (- /E = e_”(””),u(dx))
= exp (— /E [1 — /F e_“(x’y)u(dy)} M(m))
= exp (— /E . 1— e_u(w’y)u(dy)u(dx)) .

Hence M is a ppp(pu ® v).

f(m) =E




Chapter 7

Standard Poisson Process

Framework (2, F,P) probability space, time space: R, = [0, c0).

7.1 Counting processes

Definition 7.1. Let N = (IV;);>o be a continuous time stochastic process with values in
R. We say that N is a counting proces if the following holds a.s.

(i) No=0,

(ii) ¢~ N, is non-decreasing, right continuous, with values in N.

In this case we can define the successive jump times by induction:

S =min{t: N; > 0},
Siy1 =min{t > S;: Ny > Ng,} fori>0.

We also define the inter-jump times by

Ty =51, T, =8 — 51, T3 = 53— 5, ...
7.2 Exponential Random Variables

In this section, we recall the definition of an exponential random variable, and compute the
density of a vecor constructed from exponential random variables.

75
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Definition 7.2. Let A > 0, a real random variable T" is exponential with parameter \ (we
write 7' ~ Exp())) if it has density

f(t) = )\eiAtl{tzo} .

Proposition 7.1. Let A\ > 0. Let Ty,..., Ty be k real random wvariables, and consider
S; =T+ ---+T; for every i. The following are equivalent:

(i) T, ..., Ty are @id exponential with parameter \.

(i) The random vector (Sy, ..., Sk) has density f(z1,... ) = \e™ 1,y oy with

respect to Lebesque measure on RF.

Proof. |(ii) = (i)| Define the map h(ty,...,tx) = (t1,t1 + t2, ..., t1 + ...+ tx). This way we
have (T1,...,Ty) = h™*((S1,...,Sk)). By change of variables (and using that the Jacobian of
his 1), (Ty,...,T)) admits the density

k
(f o h) (th .. 7tk‘) - Ake_)\(tl—’—m—"_tk)1]-t1<...<t1-|—...—i—tk - H Ae_)\ti I]-t7',>07
=1

which establishes that T3, ..., T} are i.i.d. Exp(A) random variables.

(1) = (11) | As above, the proof follows from the change of variable formula, this time applied

to the map k defined by k(z1,...,zx) = (v1,22 — 1, .. ., T — Tp_1)-
L]

7.3 Poisson process

The Poisson process appears as a fundamental process to count a number of events occuring
in times: a typical example is the number of customer arriving in a shop. Let us say that a
shop opens at time 0, and we want to describe mathematically the arrival times of customers.
There are tw different ways to decribe the situation:

temporal view point At time 0, there is no customer, we wait a certain time 77 until the
first customer arrives, then we wait a certain time 75 between the first customer and the
second customer, and so on. This defines a sequence of times 14,715, - - -, where T1+- - - +T;
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corresponds to the arrival of the i-th customer. At time ¢, the number of customers in
the shop is given by
Ny = Z i

i>1

spatial view point Let S; be the arrival time of the customer i. One can visualize the set
S = {51,5,...} as a random subset of point of R,. Writing M (B) for the number of
points in a subset B C R, the total number of customers arriving before time ¢ is equal
to
Ne=M ([Oa t])

and corresponds to the number of point in the interval [0, ¢].

For the definition, we use the temporal view point: a Poisson process is a renewal process
with exponential inter-arrival times. In the next section, we show that this is equivalent to a
spatial view point: a Poisson process also counts the number of points in [0,¢] in a Poisson
point process with intensity ALeb on R,.

Definition 7.3. Let A > 0. Let N be a counting process. We say that N is a Poisson pro-
cess if it has jumps of size 1 (i.e. for all ¢ limsup,, ,o N; — N;—, < 1 a.s.) and its inter-jump
times T4, T5, . .. are iid with

T; ~ Exp())

for every ¢ > 1.

7.4 'Temporal vs spatial viewpoints

Theorem 7.2. Let N be a counting process with jump times Si,S3 ..., and consider the
counting measure M =", ds,. The following are equivalent

(i) N is a pp(}),
(11) M is a ppp(ALeb) on R,

(1) Yk > 1, YO =ty < ... <tg, Yni,...,n; € N we have

k
Mt — )™
P [N, — Nig=n1,..., Ny — Ny, =y = H (A( 1)) o Ati—tio1)

;!
i=1 v
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Proof. | (i) = (ii)|Let u: Ry — Ry and A € (0,00). Define

A
B:/ e~ dy,
0

By definition, M is a point process. Using the density of (S1,...,S,11), we have

N oo
EleJo M =y "Ele VS5 4]
n=0

- Z 6)“4/\”/ eiu(sl)f“f“(sn)1s1<..A<snd51 e dsy
n=0 [0 A"

> A A
= Z —'B"e_)‘A = ¢ MTAB — oxp (/ (1-— e_“(x)))\dx) :
—~n! 0
By monotone convergence, this gives

Ly (u) = exp ( /0 00(1 — e“(”)))\dx) :

Therefore, by Theorem 6.24, M is ppp with intensity ALeb.

(11) = (iz7)| This follows from the definition of a ppp applied to the disjoint intervals
(to, tl}, e (tk,h tk]

(171) = (i)| We first prove that N has jumps of size 1 on every segment [0, A] for A > 0.
Let E, ={Vi <n: Nia — Nusna < 1} for n > 0. We have

AA AA)\A
PE _—|| W o4e ) =41
[n] (6 € Tl) € (

i<n

AA
+_

",
—)

Let E = J,~ En. We have P [E] =1 (because P [E] > P [E,] for all n > 0 ) and furthermore
forallwe E

vVt < Alimsup Ny(w) — Ny_s(w) < 1.

s—0

This concludes that N has jumps of size 1. We begin with the computation of the law of
(S1,...,8) for afixed k > 1. Let U = {(s1,...5,) € RF: 0 <53 <... < s} We now show
that for all H € B(U)

]P’[(Sl,...,Sk)eH]:/ NeeMedy, . dyy.
H
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By Dynkin’s lemma, it suffices to prove it for H = [s1,¢1) X ... X [Sg, t) where 51 < t; < ... <
s < ti (by convention ty = 0).

Pwigkspsbhm]:p[rHN&—Nﬁd:o}mrHN“—N§=1}m{mk—N%21}

i<k i<k

= HG—A(Si—ti—l) . H At — si)e—A(si—ti) . (1 _ e—A(tk—sk))

i<k i<k
— H At — si)e ™% (1 — e Atmsw)

1<k

t; tr

= H/ Ady; / e Medy,.

i<k v 5 Sk

Hence (51, . .., Sy) has density f(y1,...,yr) = AFe ™1, _ . . By Proposition 7.1, this implies
that Ty = 51, Ty = Sy — S1,..., T = Sk — Sk—1 are i.i.d. Exp(\). Since the choice of k was
arbitrary, this concludes the proof. O

7.5 Microscopic Characterization

Definition 7.4. A stochastic process (X;);>o with values in R is said to have independent
and stationary increments if

VE>1, V0=t <...<tpy Xy —Xy,..., Xy, —X,_, are independent,
and

Vs<t, Vh>0 X;— X2 Xy — Xoin

Theorem 7.3. Let N be a counting process, A > 0. The following are equivalent

(i) N is pp(N),

(i1)) N has independent and stationary increments and

P[N; = 1] = Xt + 040(t)
P[N; > 2] = 040(t).
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P[N;=1]

y— = 1, and the second equation means

Remark 7.4. The first equation means lim;_,q

lim, o P22 —

Lemma 7.5. Let (p,)n>o0 be a sequence of parameters (p, € [0,1]) and X € (0,00) such that

lim np, = A.
n—oo

For every n let X,, ~ Bin(n,p,). Then
Xn 9, Pois(\).
Proof (Lemma,). See Probability Theory, p.47. ]

Proof (Theorem). Theorem 7.2(Item (iii)) implies that N has stationary and indepen-
dent increments. Furthermore, using that N, ~ Pois(At) we obtain the following asymptotic
behaviors as t | 0:

P [N, = 1] = Me ™™ = Xt + o(t),
PN, >2]=1—eM— Me ™ =0(t).

We already have that (N;) has independent increments. It suffices to prove that
Vs <t Ny — Ns~ Pois(A(t — s)).
Since N has stationary increments, it suffices to prove that
YVt N, ~ Pois(At).

Fix t € (0,00). Let n > 0. By independence and stationarity of the increments, the variables
Zi(n) = 1y, —N,_y,>1 are iid. Ber(p,) random variables, where p, = P [NL > 1} =M +o(L).
Hence X, = >0, Zi(n) is a Bin (n,p,) random variable. Since np, — At, the lemma implies
that for any k£ € N

(A" 5

P[X, =k = e

We have for every n > 0

i
n

PN, # X, <P| | {Nn—NW§2}] §Z]P’[NQ—NMZ2] :nP[N

i=1

22}.

1<i<n
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Since P |:Nt > 2} =0 (%), we get that

n

n—oo
Fix k € N. For every n > 0
[P[Ne = k] =P [Xn = k]| SE[[Ly,= — Lx, =[] <P [N # Xa].

Hence P [N; = k] = lim,,, P [X,, = k] = (’\kt!)k e Ak, O

7.6 Markov Property

Theorem 7.6 (Markov Property of N). Fiz t > 0, the stochastic process N = (Ng(t))szg
defined by Ns(t) = Nyis — Ny is a Poisson process, independent of (Ny)o<u<t-

Proof. First observe that N® is a counting process (because N is). Let so = 0 < s < - -+ < 5z,
and nq,...,ng > 0. By the finite-marginal characterization we have

P [Ns(f) —N® =py,...,NO_NO = nk] =P [Nesr — Nipao = 01+, Nip, — Niga, = 1]

S0 Sk—1

k

_ ()\(SZ — Si—l))m —A(si—si—1)
’I’LZ' ‘ '

i=1

This implies that N® is a pp()\). Independence also follows from Item (iii) of Theorem 7.2. [

7.7 Properties of Poisson Process

Theorem 7.7 (Law of Large Numbers). Let N be a pp(\), A > 0, then

Proof. This follows from the law of large numbers for renewal processes with

1 1
— = =\
po B[]
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Theorem 7.8 (Thinning). Let N = (Ny)i>0 be a pp(X) with jump times (S;)i>o. Let
(Xpn)n>o i@.i.d. Ber(p) independent of N. Define

1
N; = g Ls,<t x,=1,

i>1

0
Ny =) Lsztxi-o-

(N?) and (N}) are independent Poisson processes with respective rates \g = (1 —p)\, A\ =
DA.

Remark 7.9. N, = N + N/} almost surely.

Proof. Let M =", dg, be the ppp(ALeb) associated to N. By the thinning theorem,

MO =3"(1-X)ds, and MY =3 X

i>1 i>1

are two independent ppp with intensities (1 — p)ALeb and pALeb respectively. Therefore,
by Theorem 7.2, the two corresponding counting processes N and N'! are two independent
standard Poisson processes with intensities (1 — p)A and pA respectively. O

Let (N?) and (N}) be independent Poisson processes with respective rates A\g > 0, A; > 0.
Define Ny = N? + N}. N is a counting process and we define for every i

Xi = 1l{i’th jump of Ny is a jumping time of N}}+

Theorem 7.10 (Superposition). N; is a pp(Ao + A1) and (X;) is a marking of N with

Proof. N is a counting process (it follows directly from the definition). We consider ()0

a Poisson process with intensity A = A\g + A; and ()Zk)M i.i.d. Bernoulli ( AL ) By The-

Ao+A1
orem 7.8, the thinned processes N 0 N constructed from N are two independent processes
with respective rates Ao, A;. Therefore (N° N!) have the same distribution as (N°, N'). This
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implies that N = N° 4 N'! have the same distribution as N=No'+N ! which implies that
it is pp(A). For the independence with the X;’s, observe that the sequence X = (X;);>1 is
measurable with respect to (N° N') there exists a measurable map f such that

X = f(N°,N') and X = f(N° N').

This implies already that X has the same distribution as X , and therefore, it is a sequence
of iid Bernoulli random variables. Furthermore, we can deduce the independence of X and N
from the independence of X and N: for every ¢, measurable bounded,
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Chapter 8
Appendix

Lemma 8.1. Let A C N\ {0} be stable under addition (i.e. v,y € A = x+y € A). Then
ged(A) =1<=3dnyeN: {neN:n>ny} C A

Proof. <=: Follows from the fact that ged(ng,ng +1) = 1.

—> : Assume gcd(A) = 1. Let a € A be arbitrary and a = Hlepflpha" be its prime
factorization. Since gcd(A) = 1, one can find by,...,br € A such that for all i p; 1 b;. This
implies

ged(a, by, ..., bg) = 1.
Write d = ged(by, . .., bg). By Bezout’s Theorem, we can pick uy, ..., u; € Z such that
urby + ... +upby = d.
Now, choose an integer A large enough such that u; + Aa > 0 for every ¢ and define
b= (u; +Aa)by + ...+ (up + Aa)bpy = d+ A(by + ... + by)a.

The first expression shows that b € A, and the second implies that ged(a,b) = ged(a,d) = 1.
To summarize, we found a,b € A such that ged(a,b) = 1.

Without loss of generality, we may assume a < b. Since ged(a,b) = 1, the set B =
{b,2b,...,ab} covers all of the residue classes modulo a. Since a < b, this implies that B +
{ka, k € N} includes every number z > ab. This concludes the proof by choosing ng = ab. [
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