Brownian Motion and Stochastic Calculus Exercise Sheet 1

Submit by 12:00 on Wednesday, February 26 via the course homepage.

Exercise 1.1 (Monotone class theorem) Let (Ω, \mathcal{F}, P) be a probability space and $X, Y : \Omega \to \mathbb{R}$ random variables. Use the monotone class theorem to show that a random variable Z is $\sigma(X, Y)$ -measurable if and only if it is of the form Z = f(X, Y) for some (Borel)-measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.

Hint: It may be helpful to start by assuming that Z is bounded.

Exercise 1.2 (Modifications and indistinguishability) Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t \ge 0}$ and $Y = (Y_t)_{t \ge 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Recall that two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be modifications of each other if $P[Z_t = Z'_t] = 1$ for each $t \ge 0$, while Z and Z' are indistinguishable if $P[Z_t = Z'_t \text{ for all } t \ge 0] = 1$.

- (a) Assume that X and Y are both P-a.s. right-continuous or both P-a.s. leftcontinuous. Show that the processes are modifications of each other if and only if they are indistinguishable.
- (b) Give an example showing that one of the implications in part (a) does not hold for general stochastic processes X and Y.

Exercise 1.3 (Measurability of stochastic processes) Let $X = (X_t)_{t \ge 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- (a) Show that every progressively measurable process is product-measurable and adapted.
- (b) Assume that X is adapted and *every* path of X is right-continuous. Show that X is progressively measurable.

Remark: The same conclusion holds true if every path of X is left-continuous.

Hint: For fixed $t \ge 0$, consider the approximating sequence of processes Y^n on $\Omega \times [0,t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=0}^{2^n-1} \mathbf{1}_{(tk2^{-n},t(k+1)2^{-n}]}(u)X_{t(k+1)2^{-n}}$ for $u \in (0,t]$.

Updated: February 19, 2025

1/2

- (c) Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- (d) Use the monotone class theorem to show that every optional process is progressively measurable.

Exercise 1.4 (Transformations of Brownian motion) Let $W = (W_t)_{t \ge 0}$ be a Brownian motion.

- (a) Show that $(-W_t)_{t\geq 0}$ is a Brownian motion.
- (b) Show that for any $c \neq 0$, $(cW_{t/c^2})_{t \ge 0}$ is also a Brownian motion.