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Exercise 10.1 Let M ∈ Mc
0,loc. Show that if E[⟨M⟩t] < ∞ for all t ⩾ 0, then M is

a continuous square-integrable martingale.

Solution 10.1 As both M and M2 − ⟨M⟩ are continuous local martingales null at
zero, Exercise 8.1(b) says that the sequences of stopping times (σn)n∈N and (ρn)n∈N
defined by

σn := inf{t ⩾ 0 : |Mt| ⩾ n} and ρn := inf{t ⩾ 0 : |M2
t − ⟨M⟩t| ⩾ n}

are localising sequences for M and M2 − ⟨M⟩, respectively. Setting τn := σn ∧ ρn for
each n ∈ N, Exercise 7.1(c) gives that (τn)n∈N is a localising sequence for both M
and M2 − ⟨M⟩. So for each n ∈ N, the stopped processes M τn and (M2 − ⟨M⟩)τn

are continuous bounded martingales. The martingale property gives for each t ⩾ 0
and n ∈ N that

E[M2
τn∧t] = E[⟨M⟩τn∧t] ⩽ E[⟨M⟩t] =: C(t)

where the constant C(t) is finite by assumption. Since Mτn∧t → Mt P -a.s., Fatou’s
lemma gives

E[M2
t ] ⩽ lim inf

n→∞
E[M2

τn∧t] ⩽ C(t),

so that M is a square-integrable process. It remains to establish the martingale
property. So fix 0 ⩽ s ⩽ t and note that for each n ∈ N, we have by the martingale
property of M τn that

E[Mτn∧t | Fs] = Mτn∧s. (1)

Since supn∈N E[M2
τn∧t] ⩽ C(t), the sequence of random variables (Mτn∧t)n∈N is

bounded in L2(P ) and hence uniformly integrable. So as Mτn∧t → Mt P -a.s., we
have Mτn∧t → Mt in L1. Now for a σ-field G, the map from L1(P ) to L1(P ) defined by
X 7→ E[X | G] is (Lipschitz-) continuous, since for any X, Y ∈ L1(P ), we have

E
[
|E[X | G] − E[Y | G]|

]
⩽ E[|X − Y |].

It follows that as n → ∞,

E[Mτn∧t | Fs] → E[Mt | Fs] in L1(P ).
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Analogously, we also have Mτn∧s → Ms in L1(P ), and so by taking the limit in L1(P )
of (1) as n → ∞ yields

E[Mt | Fs] = Ms,

completing the proof.

Exercise 10.2 Let (Wt)t⩾0 be a Brownian motion defined on a probability space
(Ω, F , P ) and (Xt)0⩽t⩽T the unique strong solution (by Theorem 4.7.4) in the space
R2

c of the SDE
dXt = f(Xt) dt + g(Xt) dWt, X0 = x0,

where f, g : R → R are Lipschitz-continuous functions and x0 ∈ R is a constant.

(a) Find a non-constant function φ ∈ C2(R;R) such that the process Y = (Yt)0⩽t⩽T

given by Yt := φ(Xt) is a local martingale, and derive an SDE for Y (which no
longer involves X).

Hint: The general solution of the ODE

y′f(x) + 1
2y′′g2(x) = 0

is of the form

y(x) = a + b
∫ x

0
exp

(
− 2

∫ u

0

f(v)
g2(v) dv

)
du,

where a and b are constants.

(b) Assume additionally that f is negative on (−∞, 0) and positive on [0, ∞).
Show that Y is then a martingale.

Solution 10.2

(a) Applying Itô’s formula to Y = φ(X) for a general φ ∈ C2(R;R), we obtain
that

Yt = φ(x0) +
∫ t

0
φ′(Xs)g(Xs) dWs +

∫ t

0

(
φ′(Xs)f(Xs) + 1

2φ′′(Xs)g2(Xs)
)

ds.

We thus obtain that Y is a local martingale if φ solves the ODE

φ′(x)f(x) + 1
2φ′′(x)g2(x) = 0.

So using the hint, by picking any constants a, b ∈ R and setting

φ(x) := a + b
∫ x

0
exp

(
− 2

∫ u

0

f(v)
g2(v) dv

)
du,
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we have that Y is a local martingale, as required. As the problem asks φ to be
not constant, we require that b ̸= 0. It now remains to derive the SDE for Y .
By our choice of φ, we have

dYt = φ′(Xt)g(Xt) dWs, Y0 = φ(x0).

Also, since b ̸= 0, φ is a continuous bijection from R onto R, and therefore the
inverse function φ−1 exists (and is continuous). So we can write Xt = φ−1(Yt),
and so we get that Y satisfies the SDE

dYt = (φ′ ◦ φ−1)(Yt) (g ◦ φ−1)(Yt) dWt, Y0 = φ(x0).

(b) As Y − φ(x0) ∈ Mc
0,loc, it suffices by Exercise 10.1 to show that E[⟨Y ⟩t] < ∞

for all t ⩾ 0. Now as

Yt = φ(x0) +
∫ t

0
φ′(Xs)g(Xs) dWs,

we have
E[⟨Y ⟩t] = E

[ ∫ t

0

(
φ′(Xs)g(Xs)

)2
ds

]
,

which we should like to show is finite. To this end, we first observe that since
f is negative on (−∞, 0) and positive on [0, ∞), we have from the equality
ϕ′(x) = b exp(−2

∫ x
0

f(v)
g2(v) dv) that

sup
x∈R

|φ′(x)| ⩽ |b|.

Moreover, as g : R → R is Lipschitz-continuous, there exists a constant k > 0
such that

|g(x)| ⩽ |g(0)| + k|x|.
As (c + d)2 ⩽ 2(c2 + d2) for any c, d ∈ R, we obtain

g(x)2 ⩽ 2g(0)2 + 2k2 x2,

and so (
ϕ′(x)g(x)

)2
⩽ 2b2g(0) + 2b2k2x2 =: α + βx2,

where we relabel α := 2b2g(0) and β := 2b2k2. We thus have that

E
[ ∫ T

0

(
φ′(Xs)g(Xs)

)2
ds

]
⩽ αT + βE

[ ∫ T

0
X2

s ds
]
.

Now using that X ∈ R2
c , we write

E
[ ∫ T

0
X2

s ds
]
⩽ TE

[
sup

0⩽t⩽T
X2

t

]
< ∞.

This completes the proof.
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Exercise 10.3 Let W = (Wt)t⩾0 be a Brownian motion on a filtered probability space
(Ω, F ,F = (Ft)t⩾0, P ) satisfying the usual conditions. Fix constants θ, σ, x0 ∈ R with
σ > 0.

(a) Find a strong solution to the Langevin equation

dXt = −θXt dt + σ dWt, X0 = x0.

Hint: Assume first that a strong solution X exists and consider Ut = eθtXt.

(b) Let X denote your strong solution from part (a). Show that there exists a
Brownian motion B such that Y := X2 satisfies the SDE

dYt = (−2θYt + σ2) dt + 2σ
√

Yt dBt. (∗)

In other words, show that (Ω, F ,F, P, B, Y ) is a weak solution of the SDE (∗).

Solution 10.3

(a) Following the hint, we assume first that a strong solution X exists, and we
apply Itô’s formula to the process U = (Ut)t⩾0 given by Ut = eθtXt to get

dUt = θeθtXt dt + eθt(−θXt dt + σ dWt) = σeθt dWt.

So we have Ut = x0 +
∫ t

0 σeθs dWs. In particular, we have written Ut as an
expression that does not depend on the process X we had to assume existed in
the first place. We now define the process X by Xt := e−θtUt. Applying Itô’s
formula again yields

dXt = −θe−θtUt dt + e−θtdUt = −θXt dt + σ dWt.

As X0 = U0 = x0, it follows that X is a strong solution to the Langevin
equation, as required.

(b) By Itô’s formula, we have

dYt = 2Xt(−θXt dt + σ dWt) + σ2 dt

= (−2θX2
t + σ2) dt + 2σXt dWt

= (−2θYt + σ2) dt + 2σ
√

Yt sign(Xt) dWt.

Defining Bt :=
∫ t

0 sign(Xs) dWs, we thus have

dYt = (−2θYt + σ2) dt + 2σ
√

Yt dBt.

But by Lévy’s characterisation theorem, we have that B is a Brownian motion,
which completes the proof.
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Exercise 10.4 Let (Wt)t⩾0 be a Brownian motion defined on a probability space
(Ω, F , P ), and consider the SDE

dXt =
(√

1 + X2
t + 1

2Xt

)
dt +

√
1 + X2

t dWt, X0 = x0 ∈ R. (∗∗)

(a) Using Theorem 4.7.4, show that for any T ∈ (0, ∞) and x0 ∈ R, the SDE (∗∗)
has on [0, T ] a unique strong solution in R2

c .

(b) Show directly (and without using part (a)) that the process X = (Xt)t⩾0 given
by Xt = sinh(sinh−1(x0) + t + Wt) is the unique solution of (∗∗).

Hint: The identity cosh(sinh−1(x)) =
√

1 + x2 may be useful..

Solution 10.4

(a) We see that (∗∗) is of the form

dXt = a(Xt) dt + b(Xt) dWt, X0 = x0 ∈ R,

where
a(x) =

√
1 + x2 + 1

2x and b(x) =
√

1 + x2.

We observe that
sup
x∈R

|b′(x)| = sup
x∈R

∣∣∣∣ x√
1 + x2

∣∣∣∣ ⩽ 1

and therefore
sup
x∈R

|a′(x)| = sup
x∈R

∣∣∣∣ x√
1 + x2

+ 1
2

∣∣∣∣ ⩽ 3
2 .

So since a and b have bounded derivatives, it follows from the mean value
theorem that a and b are Lipschitz-continuous. Also, since a is Lipschitz-
continuous and |a(x)| ⩽ |a(x) − a(0)| + |a(0)|, we see that a satisfies the linear
growth condition of Theorem 4.7.4, and similarly so does b. We may thus
conclude by Theorem 4.7.4 that for any T ∈ (0, ∞) and x0 ∈ R, there exists
on [0, T ] a unique strong solution to (∗∗).

(b) Set Zt := sinh−1(x0) + t + Wt. Then dZt = dt + dWt and d⟨Z⟩t = dt. Now
noting that Xt = sinh(Zt), we apply Itô’s formula to get

dXt = cosh(Zt)(dt + dWt) + 1
2 sinh(Zt) dt

= cosh
(

sinh−1(Xt)
)
(dt + dWt) + 1

2Xt dt

=
(√

1 + X2
t + 1

2Xt

)
dt +

√
1 + X2

t dWt,

where the last step uses the identity given in the hint. It follows that X is a
solution to (∗∗).
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Conversely, let X denote any solution to (∗∗). In order to establish uniqueness
of the solution to (∗∗), we need to show that Xt = sinh(sinh−1(x0) + t + Wt).
To this end, let f(x) = sinh−1(x) and compute the derivatives

f ′(x) = 1√
1 + x2

and f ′′(x) = − x

(1 + x2)3/2 .

Then applying Itô’s formula to f(Xt), we get

df(Xt) = 1√
1 + X2

t

dXt − Xt

2(1 + X2
t )3/2 d⟨X⟩t

=
(

1 + Xt

2
√

1 + X2
t

)
dt + dWt − Xt

2(1 + X2
t )3/2 (1 + X2

t ) dt

= dt + dWt.

So f(Xt) = sinh−1(x0) + t + Wt, so that Xt = sinh(sinh−1(x0) + t + Wt). This
completes the proof.
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