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Exercise 10.1 Let M € M§,,.. Show that if E[(M),] < oo for all ¢ > 0, then M is
a continuous square-integrable martingale.

Solution 10.1 As both M and M? — (M) are continuous local martingales null at
zero, Exercise 8.1(b) says that the sequences of stopping times (0, )neny and (pn)nen
defined by

o =inf{t > 0:|M;| >n} and p,:=inf{t >0:|M} - (M), >n}

are localising sequences for M and M? — (M), respectively. Setting 7,, := o, A p, for
each n € N, Exercise 7.1(c) gives that (7,)nen is a localising sequence for both M
and M? — (M). So for each n € N, the stopped processes M™ and (M? — (M))™
are continuous bounded martingales. The martingale property gives for each ¢t > 0
and n € N that

E[M? ) = E[(M);,n] < E[(M),] =: C(t)

where the constant C(¢) is finite by assumption. Since M, A — M; P-a.s., Fatou’s

lemma gives
E[M?] < liminf E[M? ] < C(1),

so that M is a square-integrable process. It remains to establish the martingale
property. So fix 0 < s <t and note that for each n € N, we have by the martingale
property of M™ that

E[M‘rn/\t ‘ Fs] = an/\s- (1)

Since sup,ey E[M2 ,,] < C(t), the sequence of random variables (M, a)nen is

n

bounded in L?(P) and hence uniformly integrable. So as M, ., — M; P-a.s., we
have M, — My in L*. Now for a o-field G, the map from L'(P) to L'(P) defined by
X +— E[X | §] is (Lipschitz-) continuous, since for any X,Y € L'(P), we have

E[|E[X|G) - E[Y |Gl < E[IX - Y.
It follows that as n — oo,

E[M, p | Fs] = E[M,| F,] in L'(P).
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Analogously, we also have M, ,, — M, in L*(P), and so by taking the limit in L*(P)
of (1) as n — oo yields
E[M,; | F,] = M,

completing the proof.

Exercise 10.2 Let (W})~0 be a Brownian motion defined on a probability space
(Q, F, P) and (X;)o<i<r the unique strong solution (by Theorem 4.7.4) in the space
R? of the SDE

dX; = f(X;)dt + g(Xy) dW;,  Xo = 0,

where f, g : R — R are Lipschitz-continuous functions and xy € R is a constant.

(a) Find a non-constant function ¢ € C?(R;R) such that the process Y = (Y})o<i<r
given by Y; := ¢(X}) is a local martingale, and derive an SDE for Y (which no
longer involves X).

Hint: The general solution of the ODE

y'f(x )+;y”92( )=0

is of the form

y(x) :a—l—b/omexp<—2 Ou;z((i;)) dv> du,

where a and b are constants.

(b) Assume additionally that f is negative on (—o0,0) and positive on [0, c0).
Show that Y is then a martingale.

Solution 10.2
(a) Applying Itd’s formula to Y = ¢(X) for a general ¢ € C?(R;R), we obtain

that
(2o +/ 2 dw, +/ ( X f(X,) + ;go”(Xs)gQ(Xs)> ds.
We thus obtain that Y is a local martingale if ¢ solves the ODE
F(@)f(x) + 3¢ (2)g"(x) = 0.

So using the hint, by picking any constants a,b € R and setting

x) ::a+b/0xexp(—2/0u;2((7;))dv>d
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we have that Y is a local martingale, as required. As the problem asks ¢ to be
not constant, we require that b # 0. It now remains to derive the SDE for Y.
By our choice of ¢, we have

dY; = @/(Xt)g(Xt) dW,, Yo = 80(550)-

Also, since b # 0, ¢ is a continuous bijection from R onto R, and therefore the
inverse function ¢! exists (and is continuous). So we can write X; = ¢ (;),
and so we get that Y satisfies the SDE

dY; = (¢ oo )(Yy) (go o (V) AW, Yo = o(a0).

AsY — o(x9) € MG, it suffices by Exercise 10.1 to show that E[(Y),] < oo
for all £ > 0. Now as

Y=l + [ ¢/(Xg(X0) .

we have
By = B[ [ (#X0000)) as]

which we should like to show is finite. To this end, we first observe that since
f is negative on (—o0,0) and positive on [0, 00), we have from the equality
¢ (z) = bexp(—2 [y g’;((”)) dv) that

v

sup |¢'(z)] < |b].
zeR

Moreover, as g : R — R is Lipschitz-continuous, there exists a constant &k > 0
such that
l9(2)| < |g(0)] + klxl.
As (c+d)? < 2(c* + d?) for any ¢, d € R, we obtain
g(x)* < 29(0)% + 2k% 22,

and so )
(¢/(x)g(x))” < 26%g(0) + 26°k*2® =: o + Ba?,

where we relabel a := 2b%¢g(0) and 3 := 2b*k?. We thus have that
T 2 T
E[/ ((p’(XS)g(XS)) ds] < ozT—i—ﬁE[/ X? ds}
0 0
Now using that X € R?, we write

T
E / des}gTE < o0.
0

sup X}

0<t<T

This completes the proof.
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Exercise 10.3 Let W = (W;);>0 be a Brownian motion on a filtered probability space
(Q, F,F = (Fi)i=0, P) satisfying the usual conditions. Fix constants 0, o, xy € R with
o> 0.

(a) Find a strong solution to the Langevin equation
dXt = —QXt dt + Uth, X() = 29-

Hint: Assume first that a strong solution X exists and consider U, = e’ X,.

(b) Let X denote your strong solution from part (a). Show that there exists a
Brownian motion B such that Y := X? satisfies the SDE

dY; = (—20Y, + 0°) dt + 20/ Y, dB,. (%)

In other words, show that (2, F,F, P, B,Y) is a weak solution of the SDE ().

Solution 10.3

(a) Following the hint, we assume first that a strong solution X exists, and we
apply Itd’s formula to the process U = (U;)i=o given by U; = e X, to get

AU, = 0e” X, dt + " (—0X, dt 4 o dW,) = o’ AW,

So we have U, = xg + fot oe? dW,. In particular, we have written U, as an
expression that does not depend on the process X we had to assume existed in
the first place. We now define the process X by X, := e~%U,. Applying Ito’s
formula again yields

dX; = —0e U, dt + e AU, = —0X, dt + o dW;.

As Xy = Uy = xg, it follows that X is a strong solution to the Langevin
equation, as required.

(b) By It6’s formula, we have

dY; = 2X,(—0X; dt + o dW,) + o> dt
= (—=20X? + %) dt + 20X, dW,

= (=20Y, + o%) dt + 201/Y; sign(X,) dW,.
Defining B; := [, sign(X,) dW,, we thus have
dY; = (=20Y; + o*)dt + 20/Y; dB,.

But by Lévy’s characterisation theorem, we have that B is a Brownian motion,
which completes the proof.
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Exercise 10.4 Let (W})~0 be a Brownian motion defined on a probability space
(Q, F, P), and consider the SDE

1
axo= (VI+ X2+ LX) dt o TE X2, Xo=meR (o)

(a) Using Theorem 4.7.4, show that for any 7" € (0,00) and zy € R, the SDE (kx)
has on [0, 7] a unique strong solution in R2.

(b) Show directly (and without using part (a)) that the process X = (X});>0 given
by X; = sinh(sinh ™" (20) + ¢ + W,) is the unique solution of (*x).

Hint: The identity cosh(sinh™'(x)) = v/1 + 22 may be useful..

Solution 10.4
(a) We see that () is of the form

dXt = G(Xt> dt + b(Xt) th7 X() =Xy - R,

where
1
a(r) = V1422 + 3% and b(x) = V1+ z2

We observe that
x

2 |<1
V1422

sup [V'(z)| = sup
z€R zeR

and therefore

sup |a’(z)| = sup
z€eR zeR

x 1 < 3
ite 2’ 2
So since a and b have bounded derivatives, it follows from the mean value
theorem that a and b are Lipschitz-continuous. Also, since a is Lipschitz-
continuous and |a(x)| < |a(z) — a(0)| + |a(0)|, we see that a satisfies the linear
growth condition of Theorem 4.7.4, and similarly so does b. We may thus
conclude by Theorem 4.7.4 that for any T € (0,00) and z( € R, there exists
on [0, 7] a unique strong solution to ().

(b) Set Z, := sinh™'(xq) +t + W,. Then dZ, = dt + dW, and d(Z), = dt. Now
noting that X; = sinh(Z;), we apply Ito’s formula to get

1
dXt = COSh(Zt)(dt + th) + 5 Sinh(Zt) dt
1
= cosh (sinh™'(X,) ) (dt + dW;) + 5 Xrdt

!
. (x/l X2 2Xt) dt +1/1+ X2dW,

where the last step uses the identity given in the hint. It follows that X is a
solution to ().
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Conversely, let X denote any solution to (**). In order to establish uniqueness
of the solution to (), we need to show that X, = sinh(sinh ™" (z¢) + t + W,).
To this end, let f(x) = sinh™!(x) and compute the derivatives

/ 1 "
f(z) = N and f ($):—<1+22)3/g-

Then applying 1t6’s formula to f(X;), we get

1 X
g d(X),

L ax, -
Jirxz 20+ X

Xi
= 1+)dt+th—
( 2¢/1+ X?

df(Xt) =

13 2

So f(X;) = sinh™(z¢) +t + W,, so that X, = sinh(sinh™"(z¢) + ¢ + W,). This
completes the proof.
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