1/2

Brownian Motion and Stochastic Calculus Exercise Sheet 11

Submit by 12:00 on Wednesday, May 14 via the course homepage.

Exercise 11.1 Let $(W_t)_{t\geq 0}$ be a Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . Consider the SDE

$$X_t = \int_0^t b(X_s) \, \mathrm{d}s + \int_0^t \sigma(X_s) \, \mathrm{d}W_s, \quad X_0 = 0, \tag{*}$$

where $b(x) := 3x^{1/3}$ and $\sigma(x) := 3x^{2/3}$. Show that (*) has uncountably many strong solutions of the form

$$X_t^{(\theta)} := \begin{cases} 0, & 0 \leq t < \beta_{\theta}, \\ W_t^3, & \beta_{\theta} \leq t < \infty \end{cases}$$

where $0 \leq \theta < \infty$ is any fixed constant and $\beta_{\theta} := \inf\{s \geq \theta : W_s = 0\}.$

Exercise 11.2 Consider the SDE

$$dX_t^x = a(X_t^x) dt + b(X_t^x) dW_t, \qquad (**)$$
$$X_0^x = x,$$

where W is an \mathbb{R}^m -valued Brownian motion and the functions $a : \mathbb{R}^d \to \mathbb{R}^d$ and $b : \mathbb{R}^d \to \mathbb{R}^{d \times m}$ are measurable and locally bounded (that is, they are bounded on compact sets). Let $U \subseteq \mathbb{R}^d$ be a bounded open set with the property that the stopping time $T_U^x := \inf\{s \ge 0 : X_s^x \notin U\}$ is *P*-integrable for all $x \in U$. Consider the boundary problem

$$Lu(x) + c(x)u(x) = -f(x) \quad \text{for } x \in U, \qquad (***)$$
$$u(x) = g(x) \quad \text{for } x \in \partial U,$$

where $c, f \in C_b(U)$ and $g \in C_b(\partial U)$ are given functions such that $c \leq 0$ on U, and the linear operator L is defined by

$$Lh(x) := \sum_{i=1}^{d} a_i(x) \frac{\partial h}{\partial x^i}(x) + \frac{1}{2} \sum_{i,j=1}^{d} (b \, b^{\top})_{ij}(x) \frac{\partial^2 h}{\partial x^i \, \partial x^j}(x).$$

Suppose that $(X_t^x)_{t \ge 0}$ solves the SDE (**) for some $x \in U$ and $u \in C^2(U) \cap C(\overline{U})$ is a solution to the boundary problem (* * *). Show that

$$u(x) = E\left[g(X_{T_U^x}^x) \exp\left(\int_0^{T_U^x} c(X_s^x) \,\mathrm{d}s\right)\right] + E\left[\int_0^{T_U^x} f(X_s^x) \exp\left(\int_0^s c(X_r^x) \,\mathrm{d}r\right) \,\mathrm{d}s\right].$$

Updated: May 6, 2025

Hint: You may use the following standard result from analysis.

Let $K \subseteq \mathbb{R}^d$ be compact and $C \subseteq \mathbb{R}^d$ be closed such that $C \cap K = \emptyset$. Then there exists a smooth function $\psi : \mathbb{R}^d \to \mathbb{R}$ such that $\psi \equiv 1$ on K and $\psi \equiv 0$ on C.

Exercise 11.3 Consider a probability space (Ω, \mathcal{F}, P) supporting a Brownian motion $W = (W_t)_{t \ge 0}$. Denote by $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ the *P*-augmentation of the (raw) filtration generated by *W*. Let T > 0, $\alpha > 0$ and let *F* be a bounded, \mathcal{F}_T -measurable random variable.

(a) Show that the process $X = (X_t)_{0 \le t \le T}$ given by

$$X_t = -\alpha \log E[\exp(-F/\alpha) \,|\, \mathcal{F}_t]$$

satisfies the BSDE

$$dX_t = \frac{1}{2\alpha} Z_t^2 dt + Z_t dW_t,$$
$$X_T = F.$$

Hint: We have that $X_t = -\alpha \log Y_t$, where $Y_t := E[\exp(-F/\alpha) | \mathcal{F}_t]$. Apply Itô's representation theorem to Y_T and Itô's formula to X to derive a solution pair $(X, Z) \in \mathcal{R}^2 \times L^2(W)$ for the BSDE.

(b) Let $b \in \mathbb{R}$. Show that the process $X = (X_t)_{0 \le t \le T}$ given by

$$X_t = -\alpha \left(\frac{1}{2} b^2 (t - T) - b W_t + \log E[\exp(bW_T - F/\alpha) | \mathcal{F}_t] \right)$$

satisfies the BSDE

$$dX_t = \left(\frac{1}{2\alpha}Z_t^2 - bZ_t\right)dt + Z_t dW_t,$$
$$X_T = F.$$