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Exercise 11.1 Let (W})o be a Brownian motion defined on a probability space
(Q, F, P). Consider the SDE

t t
X, :/0 za()(5)<1s+/0 o(X,)dW,, Xo =0, (%)

where b(z) := 32'/3 and o(z) := 32%3. Show that () has uncountably many strong

solutions of the form
X(G) L 0, 0 <t< ﬁg,
PO WE, B <t < oo,

where 0 < 0 < oo is any fixed constant and [y := inf{s > 6 : W, = 0}.

Solution 11.1 For each 0 < 0 < oo we define the process (St(e))t>g by

g® _ ] 0, 0 <t < By,
b Wt7 59<t<00,

where [y := inf{s > 0 : W, = 0} is a stopping time. Now from Exercise 7.1(b), we
know that a stopped local martingale is again a local martingale, from which we
can conclude that also a stopped semimartingale is again a semimartingale. We also
easily see that the difference of two semimartingales is again a semimartingale. So
since Wpg, = 0, we have that

SO — = Whe

and therefore that S is a semimartingale. Moreover, we have
(S = (Whe = 2W, W), + (W),
= (W) = 2(W)) + (W)
=t—tABy
= (t = Bo)Lit=p,}-

So on {t > [y} we have that 45 = dW, and that d(S®), = dt. So applying Ito’s
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formula to the process Xt(o) = f(St(@)) for f(x) := 23, we get that

t t
X0 = (87) + [ 3(50)2as? +3 [ 50 as?),

—/ 3(X ) 2/3d59>+3/ DY1/3 4(5O),

_ [ ax s as® 43 [ (x40,
Be * * Be B
tV B

— 3(X8(9))2/3 dW, +3 /tVBH(XS(O))l/3 ds
Be

—/ 3(X® 2/3dW+3/ XO)1/3 g5,

where in third and fifth steps we use that X(?) = 0 on for all s < 9. We have thus
shown that X is a strong solution to (*) for each 0 < @ < oo, as required.

Exercise 11.2 Counsider the SDE

dX7 = a(X}) dt + b(X}) dW,, ()
Xy ==,

where W is an R™-valued Brownian motion and the functions a : R? — R?% and
b : RY — R¥™™ are measurable and locally bounded (that is, they are bounded
on compact sets). Let U C R? be a bounded open set with the property that the
stopping time T3 := inf{s > 0: X¥ ¢ U} is P-integrable for all x € U. Consider the
boundary problem

Lu(z) + c(zx)u(x) = —f(z) forzeUl, (% * *)
u(z) = g(x) for z € OU,

where ¢, f € C,(U) and g € C,(0U) are given functions such that ¢ < 0 on U, and
the linear operator L is defined by

2= Yae) )+ 13 00 w) -2 ()
- ai(x 8x1 2 i\* o0xt OxI )

i=1 ij=1

Suppose that (X[);>o solves the SDE (xx) for some z € U and w € C*(U)NC(U) is
a solution to the boundary problem (x * %). Show that

u(zx) = E[g(X;}g) exp (/OTI (Xx)dsﬂ - E[/OTJE f(XT) exp (/OS c(XY) dr) ds].

Hint: You may use the following standard result from analysis.

Let K C R? be compact and C C R? be closed such that C N K = (). Then there
exists a smooth function 1 : R? — R such that Y =1 on K and ¢ =0 on C.
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Solution 11.2 Fix z € U. For each n € N with dist(z,U¢) > 1/n, define the
stopping time

1
T% .= inf {3 >0 dist(X7,U°) < } < TE.
n

For each n € N, we define the sets

/n},
/(n+1)}.

Now K,, C R? is closed and bounded and therefore compact, and C,, is closed with
K, N C, = 0. So by the result given in the hint, there exists a smooth function
¥, : R = R such that ¢, = 1 on K,, and ¢, = 0 on C,. Define u, : R — R
by

K, = {r € R : dist(x, U°)

2
Cy = {x € R?: dist(z, U°) <

1
1

Un () = u(x),(x).

Then u, =0 on C, 2 U¢ and u, = u on {z € U : dist(z,U°) > L}. Moreover, we
have u,, € C?(R% R). Now define the process (Y™);~q by

V"= u, (X7) exp (/Ot (XY ds) :

Using It6’s formula, we compute

Y = u,(z) + /Ot exp (/08 c(X7) dr) (Lun(Xf) + C(X;”)un(Xf)) ds
+ /Ot exp </OS c(X7) dr) Vu, (X2)b(XT) dWs.

As b and ¢ are bounded on U C R and u,, has compact support, we can check that
the process

AT E
= [ e ([T dr) Vi (XX
0 0

is in Hg® (since (X*)T% does not leave U), so that M™ is a true martingale. Taking
expectations, we thus obtain

B[] — tun(x) = E[ /0 e (Lun(X7) + (X7 )un (X)) exp ( /0 T (X dr) ds}

By the definition of 77, we have u,(X{\7.) = w(Xf7e) as dist(Xjpe, U¢) >
Moreover, u,(z) = u(z) since dist(z, U¢) > 1/n. As u solves (x * %), we get

1
o

() = Blu(Xig) oo ([ e(xz)ds )]
+ E[/OM fxz) e ([ ety ar)as]. (1)
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By continuity of the process (dist(X7, U))¢>0, we have that T* 1 15 < oo, which is
integrable by assumption. Since ¢ < 0, we have for any n € N and ¢ > 0 that

u(Xiarg) o
[ s ([ axna)

Note that X7. € OU by the definition of 77, so that U(X%g) = g(X%g) by (% * x).
Using the dominated convergence theorem, we let ¢ — oo and n — oo in (1) to

conclude that
u(z) = E[g(X%) exp (/OTg c(X7) ds)} +FE /OTg F(XZ) exp (/OS (X)) dr) ds},

as required.

AT
< sup |u(y)| < oo,
yeU

< Ty sup | f(y)l-
yelU

(X7 ds)

Exercise 11.3 Consider a probability space (€2, F, P) supporting a Brownian motion
W = (W)is0. Denote by F = (F;);>0 the P-augmentation of the (raw) filtration
generated by W. Let T"> 0, a > 0 and let F' be a bounded, Fr-measurable random
variable.

(a) Show that the process X = (X¢)o<t<r given by
X; = —alog Elexp(—F/a) | Fi]
satisfies the BSDE
1
dXt - 7Zt2 dt + Zt th,
2a
Xr=PF.

Hint: We have that X; = —alogYy;, where Y; := Elexp(—F/a) | F|. Apply
Ito’s representation theorem to Yr and Ito’s formula to X to derive a solution

pair (X, Z) € R?* x L*(W) for the BSDE.
(b) Let b € R. Show that the process X = (X;)o<i<r given by

X, = —a (;b%ﬁ —T) — bW, + log Elexp(tWr — F/a) |]—“t])

satisfies the BSDE

«

1
dXt — <2 Zt2 — bZt> dt + Zt th7
Xr=F.

Solution 11.3
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(a) Ito’s representation theorem applied to the bounded random variable exp(—F'/«)

gives a unique representation
T
exp(—F/a) = Elexp(—F/a)] + /0 H, dW,

for some H € L (W) such that H e W is a true martingale. Since F is
bounded, so is exp(—F/a). Therefore, the continuous martingale (Y;)o<i<r

given by
Y, = /0 "H,dW, + Elexp(—F/a)] = Elexp(—F/a) | F]

is bounded as well. In particular, we have that (H e W)T € H2° so that
H e L*(WT). Next, applying Ito’s formula to X; = —alogV; and setting

Ly = —“let yields

(6] (0]

—e Y+ —— AV
v
oH,y aH?

= AW, + =L dt

v v

1
200

dXt -

So it only remains to show that (X, Z) € R? x L*(WT). Since F is bounded,
we have that ¢ <Y < C for some constants 0 < ¢ < C' < 0o. Hence X is also
bounded and thus X € R?. Since Y is bounded away from 0 in w and ¢, we
have that Z € L2(WT) as H € L*(WT), as required.

Consider the measure () ~ P on Fp with density process

d 1
Q _ W= b2t

0<t<T.
dP |7, ’

By Girsanov’s theorem, we have that WtQ = W;—bt is a Q-Brownian motion on
[0, T]. Moreover, note that on [0,T], W and W% generate the same filtration.
We can rewrite the BSDE as

1
dXt - %ZE dt ‘l’ Zt thQ7
Xr=F
Under @, the BSDE is as in (a). Thus, we deduce that

Xy = —alog Eglexp(—F/a) | Fi
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is a solution. Using the definition of () and Bayes’ formula, we obtain that
X = —alog Eglexp(—F/a) | Fi]
= —alog (e‘bwﬁ;b% E[ebWT_%bQT exp(—F'/a) |~7:t])

S (bQ(tQ_T) — bW, + log Elexp(bWr — F/a) |]:t]> ;

completing the proof.
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