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Exercise 11.1 Let (Wt)t⩾0 be a Brownian motion defined on a probability space
(Ω,F , P ). Consider the SDE

Xt =
∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs, X0 = 0, (∗)

where b(x) := 3x1/3 and σ(x) := 3x2/3. Show that (∗) has uncountably many strong
solutions of the form

X
(θ)
t :=

{
0, 0 ⩽ t < βθ,
W 3

t , βθ ⩽ t < ∞,

where 0 ⩽ θ < ∞ is any fixed constant and βθ := inf{s ⩾ θ : Ws = 0}.

Solution 11.1 For each 0 ⩽ θ < ∞ we define the process (S(θ)
t )t⩾0 by

S
(θ)
t =

{
0, 0 ⩽ t < βθ,
Wt, βθ ⩽ t < ∞,

where βθ := inf{s ⩾ θ : Ws = 0} is a stopping time. Now from Exercise 7.1(b), we
know that a stopped local martingale is again a local martingale, from which we
can conclude that also a stopped semimartingale is again a semimartingale. We also
easily see that the difference of two semimartingales is again a semimartingale. So
since Wβθ

= 0, we have that
S(θ) = W −W βθ

and therefore that S(θ) is a semimartingale. Moreover, we have

⟨S(θ)⟩t = ⟨W ⟩t − 2⟨W,W βθ⟩t + ⟨W βθ⟩t

= ⟨W ⟩t − 2⟨W ⟩βθ
t + ⟨W ⟩βθ

t

= t− t ∧ βθ

= (t− βθ)1{t⩾βθ}.

So on {t ⩾ βθ} we have that dS(θ)
t = dWt and that d⟨S(θ)⟩t = dt. So applying Itô’s
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formula to the process X(θ)
t := f(S(θ)

t ) for f(x) := x3, we get that

X
(θ)
t = (S(θ)

0 )3 +
∫ t

0
3(S(θ)

s )2 dS(θ)
s + 3

∫ t

0
S(θ)

s d⟨S(θ)⟩s

=
∫ t

0
3(X(θ)

s )2/3 dS(θ)
s + 3

∫ t

0
(X(θ)

s )1/3 d⟨S(θ)⟩s

=
∫ t∨βθ

βθ

3(X(θ)
s )2/3 dS(θ)

s + 3
∫ t∨βθ

βθ

(X(θ)
s )1/3 d⟨S(θ)⟩s

=
∫ t∨βθ

βθ

3(X(θ)
s )2/3 dWs + 3

∫ t∨βθ

βθ

(X(θ)
s )1/3 ds

=
∫ t

0
3(X(θ)

s )2/3 dWs + 3
∫ t

0
(X(θ)

s )1/3 ds,

where in third and fifth steps we use that X(θ)
s = 0 on for all s < βθ. We have thus

shown that X(θ) is a strong solution to (∗) for each 0 ⩽ θ < ∞, as required.

Exercise 11.2 Consider the SDE

dXx
t = a(Xx

t ) dt+ b(Xx
t ) dWt, (∗∗)

Xx
0 = x,

where W is an Rm-valued Brownian motion and the functions a : Rd → Rd and
b : Rd → Rd×m are measurable and locally bounded (that is, they are bounded
on compact sets). Let U ⊆ Rd be a bounded open set with the property that the
stopping time T x

U := inf{s ⩾ 0 : Xx
s /∈ U} is P -integrable for all x ∈ U . Consider the

boundary problem

Lu(x) + c(x)u(x) = −f(x) for x ∈ U, (∗ ∗ ∗)
u(x) = g(x) for x ∈ ∂U,

where c, f ∈ Cb(U) and g ∈ Cb(∂U) are given functions such that c ⩽ 0 on U , and
the linear operator L is defined by

Lh(x) :=
d∑

i=1
ai(x) ∂h

∂xi
(x) + 1

2

d∑
i,j=1

(b b⊤)ij(x) ∂2h

∂xi ∂xj
(x).

Suppose that (Xx
t )t⩾0 solves the SDE (∗∗) for some x ∈ U and u ∈ C2(U) ∩ C(U) is

a solution to the boundary problem (∗ ∗ ∗). Show that

u(x) = E

[
g(Xx

T x
U
) exp

(∫ T x
U

0
c(Xx

s ) ds
)]

+ E

[ ∫ T x
U

0
f(Xx

s ) exp
(∫ s

0
c(Xx

r ) dr
)

ds
]
.

Hint: You may use the following standard result from analysis.

Let K ⊆ Rd be compact and C ⊆ Rd be closed such that C ∩ K = ∅. Then there
exists a smooth function ψ : Rd → R such that ψ ≡ 1 on K and ψ ≡ 0 on C.
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Solution 11.2 Fix x ∈ U . For each n ∈ N with dist(x, U c) > 1/n, define the
stopping time

T x
n := inf

{
s ⩾ 0 : dist(Xx

s , U
c) ⩽ 1

n

}
⩽ T x

U .

For each n ∈ N, we define the sets

Kn := {x ∈ Rd : dist(x, U c) ⩾ 1/n},
Cn := {x ∈ Rd : dist(x, U c) ⩽ 1/(n+ 1)}.

Now Kn ⊂ Rd is closed and bounded and therefore compact, and Cn is closed with
Kn ∩ Cn = ∅. So by the result given in the hint, there exists a smooth function
ψn : Rd → R such that ψn ≡ 1 on Kn and ψn ≡ 0 on Cn. Define un : Rd → R
by

un(x) := u(x)ψn(x).

Then un ≡ 0 on Cn ⊇ U c and un ≡ u on {z ∈ U : dist(z, U c) ⩾ 1
n
}. Moreover, we

have un ∈ C2(Rd;R). Now define the process (Y n)t⩾0 by

Y n
t := un(Xx

t ) exp
(∫ t

0
c(Xx

s ) ds
)
.

Using Itô’s formula, we compute

Y n
t = un(x) +

∫ t

0
exp

(∫ s

0
c(Xx

r ) dr
) (

Lun(Xx
s ) + c(Xx

s )un(Xx
s )
)

ds

+
∫ t

0
exp

(∫ s

0
c(Xx

r ) dr
)

∇un(Xx
s )b(Xx

s ) dWs.

As b and c are bounded on U ⊆ R and un has compact support, we can check that
the process

Mn
t =

∫ t∧T x
n

0
exp

(∫ s

0
c(Xx

r ) dr
)

∇un(Xx
s )b(Xx

s )dWs

is in H2,c
0 (since (Xx)T x

n does not leave U), so that Mn is a true martingale. Taking
expectations, we thus obtain

E[Y n
t∧T x

n
] − un(x) = E

[ ∫ t∧T x
n

0

(
Lun(Xx

s ) + c(Xx
s )un(Xx

s )
)

exp
(∫ s

0
c(Xx

r ) dr
)

ds
]
.

By the definition of T x
n , we have un(Xx

t∧T x
n
) = u(Xx

t∧T x
n
) as dist(Xx

t∧T x
n
, U c) ⩾ 1

n
.

Moreover, un(x) = u(x) since dist(x, U c) > 1/n. As u solves (∗ ∗ ∗), we get

u(x) = E
[
u(Xx

t∧T x
n
) exp

( ∫ t∧T x
n

0
c(Xx

s ) ds
)]

+ E
[ ∫ t∧T x

n

0
f(Xx

s ) exp
( ∫ s

0
c(Xx

r ) dr
)

ds
]
. (1)
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By continuity of the process (dist(Xx
t , U

c))t⩾0, we have that T x
n ↑ T x

U < ∞, which is
integrable by assumption. Since c ⩽ 0, we have for any n ∈ N and t ⩾ 0 that∣∣∣∣u(Xx

t∧T x
n
) exp

( ∫ t∧T x
n

0
c(Xx

s ) ds
)∣∣∣∣ ⩽ sup

y∈U

|u(y)| < ∞,

∣∣∣∣ ∫ t∧T x
n

0
f(Xx

s ) exp
( ∫ s

0
c(Xx

r ) dr
)∣∣∣∣ ⩽ T x

U sup
y∈U

|f(y)|.

Note that Xx
T x

U
∈ ∂U by the definition of T x

U , so that u(Xx
T x

U
) = g(Xx

T x
U
) by (∗ ∗ ∗).

Using the dominated convergence theorem, we let t → ∞ and n → ∞ in (1) to
conclude that

u(x) = E
[
g(Xx

T x
U
) exp

( ∫ T x
U

0
c(Xx

s ) ds
)]

+ E
[ ∫ T x

U

0
f(Xx

s ) exp
( ∫ s

0
c(Xx

r ) dr
)

ds
]
,

as required.

Exercise 11.3 Consider a probability space (Ω,F , P ) supporting a Brownian motion
W = (Wt)t⩾0. Denote by F = (Ft)t⩾0 the P -augmentation of the (raw) filtration
generated by W . Let T > 0, α > 0 and let F be a bounded, FT -measurable random
variable.

(a) Show that the process X = (Xt)0⩽t⩽T given by

Xt = −α logE[exp(−F/α) | Ft]

satisfies the BSDE

dXt = 1
2αZ

2
t dt+ Zt dWt,

XT = F.

Hint: We have that Xt = −α log Yt, where Yt := E[exp(−F/α) | Ft]. Apply
Itô’s representation theorem to YT and Itô’s formula to X to derive a solution
pair (X,Z) ∈ R2 × L2(W ) for the BSDE.

(b) Let b ∈ R. Show that the process X = (Xt)0⩽t⩽T given by

Xt = −α
(1

2b
2(t− T ) − bWt + logE[exp(bWT − F/α) | Ft]

)
satisfies the BSDE

dXt =
( 1

2α Z
2
t − b Zt

)
dt+ Zt dWt,

XT = F.

Solution 11.3
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(a) Itô’s representation theorem applied to the bounded random variable exp(−F/α)
gives a unique representation

exp(−F/α) = E[exp(−F/α)] +
∫ T

0
Hs dWs

for some H ∈ L2
loc(W ) such that H • W is a true martingale. Since F is

bounded, so is exp(−F/α). Therefore, the continuous martingale (Yt)0⩽t⩽T

given by

Yt =
∫ t

0
Hs dWs + E[exp(−F/α)] = E[exp(−F/α) | Ft]

is bounded as well. In particular, we have that (H • W )T ∈ H2,c
0 , so that

H ∈ L2(W T ). Next, applying Itô’s formula to Xt = −α log Yt and setting
Zt := −αHt

Yt
yields

dXt = − α

Yt

dYt + α

2Y 2
t

d⟨Y ⟩t

= −αHt

Yt

dWt + αH2
t

2Y 2
t

dt

= Zt dWt + 1
2αZ

2
t dt.

So it only remains to show that (X,Z) ∈ R2 × L2(W T ). Since F is bounded,
we have that c ⩽ Y ⩽ C for some constants 0 < c < C < ∞. Hence X is also
bounded and thus X ∈ R2. Since Y is bounded away from 0 in ω and t, we
have that Z ∈ L2(W T ) as H ∈ L2(W T ), as required.

(b) Consider the measure Q ≈ P on FT with density process

dQ

dP

∣∣∣∣
Ft

= ebWt− 1
2 b2t, 0 ⩽ t ⩽ T.

By Girsanov’s theorem, we have that WQ
t = Wt −bt is a Q-Brownian motion on

[0, T ]. Moreover, note that on [0, T ], W and WQ generate the same filtration.
We can rewrite the BSDE as

dXt = 1
2αZ

2
t dt+ Zt dWQ

t ,

XT = F.

Under Q, the BSDE is as in (a). Thus, we deduce that

Xt = −α logEQ[exp(−F/α) | Ft]
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is a solution. Using the definition of Q and Bayes’ formula, we obtain that

Xt = −α logEQ[exp(−F/α) | Ft]

= −α log
(
e−bWt+ 1

2 b2t E[ebWT − 1
2 b2T exp(−F/α) | Ft]

)
= −α

(
b2(t− T )

2 − bWt + logE[exp(bWT − F/α) | Ft]
)
,

completing the proof.

Updated: May 6, 2025 6 / 6


