Brownian Motion and Stochastic Calculus Exercise Sheet 12

Submit by 12:00 on Wednesday, May 21 via the course homepage.

Exercise 12.1 Show that any Lévy process X has no fixed time of discontinuity, meaning that $P[\Delta X_t = 0] = 1$ for any $t \ge 0$ (where we set $X_{0-} := 0$).

Exercise 12.2

- (a) Let N be a one-dimensional Poisson process and $Y = (Y_i)_{i \in \mathbb{N}}$ a sequence of i.i.d. \mathbb{R}^d -valued random variables which are also independent of N. We define the compound Poisson process $X = (X_t)_{t \ge 0}$ by $X_t := \sum_{j=1}^{N_t} Y_j$. Show that X is a Lévy process and calculate its Lévy triplet.
- (b) Does there exist a Lévy process X such that X_1 is uniformly distributed on [0, 1]?
- (c) Let $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ be \mathbb{R}^d -valued processes such that the joint process (X, Y) is Lévy with respect to a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$.

Show that if

$$E[e^{\mathrm{i}u^{\top}X_t}e^{\mathrm{i}v^{\top}Y_t}] = E[e^{\mathrm{i}u^{\top}X_t}]E[e^{\mathrm{i}v^{\top}Y_t}]$$

for all $u, v \in \mathbb{R}^d$ and $t \ge 0$, then X and Y are independent.

Exercise 12.3 Show that any RCLL function $f : \mathbb{R}_+ \to \mathbb{R}$ is bounded and has only countably many jumps on any compact interval.