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Exercise 12.1 Show that any Lévy process X has no fixed time of discontinuity,
meaning that P [∆Xt = 0] = 1 for any t ⩾ 0 (where we set X0− := 0).

Solution 12.1 For t = 0, we have ∆X0 = X0 − X0− = 0 and so there is nothing to
prove. So fix t > 0 and ε > 0. Suppose for a fixed ω ∈ Ω that |∆Xt(ω)| > ε. This
means that | lims↑t Xs(ω) − Xt(ω)| > ε, and therefore for all s < t close enough to t,
we have |Xt(ω) − Xs(ω)| > ε

2 . So defining for each k ∈ N the set

Ak :=
{

|Xt − Xt− 1
k
| >

ε

2

}
,

we have
{|∆Xt| > ε} ⊆

⋃
n∈N

⋂
k⩾n

Ak = lim inf
n→∞

An.

Therefore,

P [|∆Xt| > ε] = E[1{|∆Xt|>ε}] ⩽ E[1lim infn→∞ Ak
] = E[lim inf

n→∞
1An ],

where the last step uses that 1lim infn→∞ Bn = lim infn→∞ 1Bn for any sequence of sets
(Bn)n∈N. As the 1An are nonnegative, we may apply Fatou’s lemma to get

P [|∆Xt| > ε] ⩽ lim inf
n→∞

E[1An ] = lim inf
n→∞

P [An] = 0,

where the last step uses that X is stochastically continuous and therefore Xt− 1
n

→ Xt

in probability as n → ∞. Now as

{∆Xt ̸= 0} =
∞⋃

n=1

{
|∆Xt| >

1
n

}

is a countable union of nullsets, it follows that {∆Xt ̸= 0} is also a nullset, so that
P [∆Xt = 0] = 1, as required.

Exercise 12.2
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(a) Let N be a one-dimensional Poisson process and Y = (Yi)i∈N a sequence of
i.i.d. Rd-valued random variables which are also independent of N . We define
the compound Poisson process X = (Xt)t⩾0 by Xt := ∑Nt

j=1 Yj. Show that X is
a Lévy process and calculate its Lévy triplet.

(b) Does there exist a Lévy process X such that X1 is uniformly distributed on
[0, 1]?

(c) Let (Xt)t⩾0 and (Yt)t⩾0 be Rd-valued processes such that the joint process
(X, Y ) is Lévy with respect to a filtration F = (Ft)t⩾0.

Show that if
E[eiu⊤Xteiv⊤Yt ] = E[eiu⊤Xt ] E[eiv⊤Yt ]

for all u, v ∈ Rd and t ⩾ 0, then X and Y are independent.

Solution 12.2

(a) Define the discrete-time process (X̃n)n∈N0 by X̃n = ∑n
j=1 Yj, with natural

filtration given by F̃n = σ(Y1, . . . , Yn). It is clear that X̃0 = 0 and X̃ has
stationary and independent increments. We also know that the Poisson process
N is a Lévy process independent of X̃. In particular, FN

∞ = σ(Nt : t ⩾ 0)
and F̃∞ = σ(Y1, Y2, . . .) are independent σ-fields. We want to show that the
process (Xt)t⩾0 defined by

Xt =
Nt∑

j=1
Yj = X̃Nt

is Lévy. Fix 0 ⩽ t1 < · · · < tm and bounded measurable functions fj. Using
the properties of X̃ and N , we have that

E

[
m∏

j=1
fj(Xtj

− Xtj−1)
]

= E

[
m∏

j=1
fj(X̃Ntj

− X̃Ntj−1
)
]

= E

E

[
m∏

j=1
fj(X̃Ntj

− X̃Ntj−1
)
∣∣∣∣∣ FN

∞

]
= E

E

[
m∏

j=1
fj(X̃nj

− X̃nj−1)
]∣∣∣∣∣

nj=Ntj


= E

[(
m∏

j=1
E[fj(X̃nj

− X̃nj−1)]
)∣∣∣∣∣

nj=Ntj

]

= E

[(
m∏

j=1
E[fj(X̃nj−nj−1)]

)∣∣∣∣∣
nj=Ntj

]
.
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Now defining the functions gj : N → R by gj(n) := E[fj(X̃n)], we have

E

[
m∏

j=1
fj(Xtj

− Xtj−1)
]

= E

[
m∏

j=1
gj(Ntj

− Ntj−1)
]

=
m∏

j=1
E[gj(Ntj

− Ntj−1)]

=
m∏

j=1
E[gj(Ntj−tj−1)]

=
m∏

j=1
E
[
E[fj(X̃nj

)]|nj=Ntj −tj−1

]

=
m∏

j=1
E
[
E[fj(X̃Ntj −tj−1

) | FN
∞]
]

=
m∏

j=1
E[fj(Xtj−tj−1)].

By the same reasoning as in Exercise 6.3(a), we thus obtain that X is Lévy
(since we also have X0 = 0).

Next, we calculate the Lévy triplet. For u ∈ Rd, we have

E[eiu⊤Xt ] = E

[∑
n⩾0

1{Nt=n}

n∏
j=1

eiu⊤Yj

]
=
∑
n⩾0

P [Nt = n](E[eiu⊤Y1 ])n

=
∑
n⩾0

e−λt(λt)n

n! (E[eiu⊤Y1 ])n = e−λt exp(λtE[eiu⊤Y1 ])

= exp
(
λt(E[eiu⊤Y1 ] − 1)

)
.

Let νY be the distribution of Y1 and ν := λνY . Then

λ(E[eiu⊤Y1 ] − 1) = λ
∫

(eiu⊤x − 1) dνY (x) =
∫

(eiu⊤x − 1) dν(x).

Truncating as in the lecture notes, we can decompose

E[eiu⊤Xt ] = exp
(

t
∫

(eiu⊤x − 1) dν(x)
)

= exp
t

(∫
iu⊤x1{|x|⩽1} dν(x) +

∫
(eiu⊤x − 1 − iu⊤x1{|x|⩽1}) dν(x)

).

Therefore, we obtain the triplet (b, 0, ν), where b =
∫

{x: |x|⩽1} x dν(x).

(b) No. In fact, we can generalise the result to any random variable X1 with
compact support supp(X1) ⊆ [a, b], for some a < b. To this end, we claim that
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if X1 has compact support and is infinitely divisible, then X1 is constant. This
shows that there is no Lévy process X such that X1 is uniformly distributed
on [0, 1].

Now we prove the claim. By infinite divisibility, for each n ∈ N, we have X1 =∑n
j=1 Y n

j , where the random variables (Y n
j )j=1,...,n are i.i.d. This implies that

supp(Y n
j ) ⊆ [a/n, b/n]. Indeed, suppose for contradiction P [Y n

j > b/n] > 0.
As the Y n

j are i.i.d., we then have that

P [X1 > b] ⩾ P

[
n⋂

j=1

{
Y n

j >
b

n

}]
=
(

P
[
Y n

j >
b

n

])n

> 0,

which contradicts the fact that supp(X1) ⊆ [a, b]. The case P [Y n
j < a/n] > 0

is analogous.

Since supp(Y n
j ) ⊆ [a/n, b/n], we have that Var[Y n

j ] ⩽ (b − a)2/n2. Therefore
we get Var[X1] ⩽ (b − a)2/n → 0 as n → ∞, so that X1 is constant, as claimed.

(c) We need to show that (Xt1 , . . . , Xtn) is independent of (Yt1 , . . . , Ytn) for any
n ∈ N and 0 = t0 < t1 < · · · < tn. This follows if we can show that the random
variables

Xt1 − Xt0 , . . . , Xtn − Xtn−1 , Yt1 − Yt0 , . . . , Ytn − Ytn−1

are independent, because transformations of independent random variables are
still independent. For j = 1, . . . , n and uj, vj ∈ Rd, we have that

E

[
n∏

j=1
eiu⊤

j (Xtj −Xtj−1 )+iv⊤
j (Ytj −Ytj−1 )

]

= E

E

[
n∏

j=1
eiu⊤

j (Xtj −Xtj−1 )+iv⊤
j (Ytj −Ytj−1 )

∣∣∣∣∣ Ftn−1

]
= E

[
E[eiu⊤

j (Xtn −Xtn−1 )+iv⊤
j (Ytn −Ytn−1 ) | Ftn−1 ]

n−1∏
j=1

eiu⊤
j (Xtj −Xtj−1 )+iv⊤

j (Ytj −Ytj−1 )
]
.

Since (X, Y ) is a Lévy process with respect to F, in particular so is u⊤
j X +v⊤

j Y ,
so that u⊤

j (Xtn − Xtn−1) + v⊤
j (Ytn − Ytn−1) is independent of Ftn−1 and has the

same distribution as u⊤
j Xtn−tn−1 + v⊤

j Ytn−tn−1 . Therefore, the expression above
is equal to

E[eiu⊤
j Xtn−tn−1 +iv⊤

j Ytn−tn−1 ]E
[

n−1∏
j=1

eiu⊤
j (Xtj −Xtj−1 )+iv⊤

j (Ytj −Ytj−1 )
]
.

We can apply an inductive argument to the remaining product to obtain that

E

[
n∏

j=1
eiu⊤

j (Xtj −Xtj−1 )+iv⊤
j (Ytj −Ytj−1 )

]
=

n∏
j=1

E[eiu⊤
j Xtj −tj−1 +iv⊤

j Ytj −tj−1 ].
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Finally, by the assumption on X and Y , we have that
n∏

j=1
E[eiu⊤

j Xtj −tj−1 +iv⊤
j Ytj −tj−1 ] =

n∏
j=1

E[eiu⊤
j Xtj −tj−1 ]E[eiv⊤

j Ytj −tj−1 ]

=
n∏

j=1
E[eiu⊤

j (Xtj −Xtj−1 )]E[eiv⊤
j (Ytj −Ytj−1 )].

We have thus shown, as claimed, that the random variables

Xt1 − Xt0 , . . . , Xtn − Xtn−1 , Yt1 − Yt0 , . . . , Ytn − Ytn−1

are independent. In particular, the vectors

(Xt1 − Xt0 , . . . , Xtn − Xtn−1), (Yt1 − Yt0 , . . . , Ytn − Ytn−1)

are independent, and therefore so are (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn). Now
since 0 = t0 < t1 < · · · < tn were chosen arbitrarily, this shows that X and Y
are independent, as required.

Exercise 12.3 Show that any RCLL function f : R+ → R is bounded and has only
countably many jumps on any compact interval.

Solution 12.3 For each ε > 0, define the set

Dε := {t ⩾ 0 : |∆f(t)| ⩾ ε}

of jumps of size at least ε. Fix 0 ⩽ a < b. We claim that [a, b] ∩ Dε is at most finite,
so that f has at most finitely many jumps of size at least ε on the interval [a, b]. To
this end, suppose for contradiction that [a, b] ∩ Dε is infinite, and take a countable
subset (tn)n∈N ⊆ [a, b] ∩ Dε. Then (tn)n∈N is a bounded sequence of real numbers,
and thus by the Bolzano–Weierstrass theorem, there is a convergent subsequence
(tnk

)k∈N, say tnk
→ t0 as k → ∞. By taking a further subsequence, we may assume

without loss of generality that either tnk
< t for all k ∈ N or tnk

> t for all k ∈ N. We
first consider the case that tnk

< t for all k ∈ N. By the existence of left limits of f ,
there is some δ > 0 such that for all s1, s2 ∈ (t0 − δ, t0), we have |f(s1) − f(s2)| < ε.
But also there is some k ∈ N with tnk

∈ (t0 − δ, t0), which would then contradict
tnk

∈ Dε. This completes the proof of the first case. Now the other case that tnk
> t

for all k ∈ N is completely analogous, by the existence of right limits of f .

We have thus shown that [a, b]∩Dε is (at most) finite. Now the set of all discontinuities
of f is simply ⋃∞

n=1 D1/n. As a countable union of finite sets is countable, we may
conclude that f has only countably many jumps on [a, b].

It remains to show that f is bounded on [a, b]. Suppose for contradiction that f is
unbounded on [a, b]. Then there exists a sequence (tn)n∈N ⊆ [a, b] with f(tn) → ∞ or
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f(tn) → −∞ as n → ∞. We may assume that f(tn) → ∞, as the case f(tn) → −∞
follows analogously. By the Bolzano–Weierstrass theorem, there exists a convergent
subsequence (tnk

)k∈N, say tnk
→ t as k → ∞. By considering a further subsequence,

we may assume that either tnk
< t for all k ∈ N or tnk

> t for all k ∈ N. We first
consider the case where tnk

< t for all k ∈ N. By the existence of left limits of f ,
lims↑t f(s) =: L exists (in R). But since f(tn) → ∞, we also must have f(tnk

) → ∞,
which contradicts the finiteness of L. As the case where tnk

> t for all k ∈ N is
analogous, this completes the proof.
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