Brownian Motion and Stochastic Calculus Exercise Sheet 12

Submit by 12:00 on Wednesday, May 21 via the course homepage.

Exercise 12.1 Show that any Lévy process X has no fixed time of discontinuity, meaning that $P[\Delta X_t = 0] = 1$ for any $t \ge 0$ (where we set $X_{0-} := 0$).

Solution 12.1 For t = 0, we have $\Delta X_0 = X_0 - X_{0-} = 0$ and so there is nothing to prove. So fix t > 0 and $\varepsilon > 0$. Suppose for a fixed $\omega \in \Omega$ that $|\Delta X_t(\omega)| > \varepsilon$. This means that $|\lim_{s\uparrow t} X_s(\omega) - X_t(\omega)| > \varepsilon$, and therefore for all s < t close enough to t, we have $|X_t(\omega) - X_s(\omega)| > \frac{\varepsilon}{2}$. So defining for each $k \in \mathbb{N}$ the set

$$A_k := \left\{ |X_t - X_{t-\frac{1}{k}}| > \frac{\varepsilon}{2} \right\},$$

we have

$$\{|\Delta X_t| > \varepsilon\} \subseteq \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k = \liminf_{n \to \infty} A_n.$$

Therefore,

$$P[|\Delta X_t| > \varepsilon] = E[\mathbf{1}_{\{|\Delta X_t| > \varepsilon\}}] \leqslant E[\mathbf{1}_{\liminf_{n \to \infty} A_k}] = E[\liminf_{n \to \infty} \mathbf{1}_{A_n}],$$

where the last step uses that $\mathbf{1}_{\liminf_{n\to\infty}B_n} = \liminf_{n\to\infty}\mathbf{1}_{B_n}$ for any sequence of sets $(B_n)_{n\in\mathbb{N}}$. As the $\mathbf{1}_{A_n}$ are nonnegative, we may apply Fatou's lemma to get

$$P[|\Delta X_t| > \varepsilon] \leqslant \liminf_{n \to \infty} E[\mathbf{1}_{A_n}] = \liminf_{n \to \infty} P[A_n] = 0,$$

where the last step uses that X is stochastically continuous and therefore $X_{t-\frac{1}{n}} \to X_t$ in probability as $n \to \infty$. Now as

$$\left\{\Delta X_t \neq 0\right\} = \bigcup_{n=1}^{\infty} \left\{ |\Delta X_t| > \frac{1}{n} \right\}$$

is a countable union of nullsets, it follows that $\{\Delta X_t \neq 0\}$ is also a nullset, so that $P[\Delta X_t = 0] = 1$, as required.

Exercise 12.2

Updated: May 13, 2025

- (a) Let N be a one-dimensional Poisson process and $Y = (Y_i)_{i \in \mathbb{N}}$ a sequence of i.i.d. \mathbb{R}^d -valued random variables which are also independent of N. We define the compound Poisson process $X = (X_t)_{t \ge 0}$ by $X_t := \sum_{j=1}^{N_t} Y_j$. Show that X is a Lévy process and calculate its Lévy triplet.
- (b) Does there exist a Lévy process X such that X_1 is uniformly distributed on [0, 1]?
- (c) Let $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ be \mathbb{R}^d -valued processes such that the joint process (X, Y) is Lévy with respect to a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$.

Show that if

$$E[e^{\mathrm{i}u^{\top}X_t}e^{\mathrm{i}v^{\top}Y_t}] = E[e^{\mathrm{i}u^{\top}X_t}]E[e^{\mathrm{i}v^{\top}Y_t}]$$

for all $u, v \in \mathbb{R}^d$ and $t \ge 0$, then X and Y are independent.

Solution 12.2

(a) Define the discrete-time process $(\widetilde{X}_n)_{n\in\mathbb{N}_0}$ by $\widetilde{X}_n = \sum_{j=1}^n Y_j$, with natural filtration given by $\widetilde{\mathcal{F}}_n = \sigma(Y_1, \ldots, Y_n)$. It is clear that $\widetilde{X}_0 = 0$ and \widetilde{X} has stationary and independent increments. We also know that the Poisson process N is a Lévy process independent of \widetilde{X} . In particular, $\mathcal{F}_{\infty}^N = \sigma(N_t : t \ge 0)$ and $\widetilde{\mathcal{F}}_{\infty} = \sigma(Y_1, Y_2, \ldots)$ are independent σ -fields. We want to show that the process $(X_t)_{t\ge 0}$ defined by

$$X_t = \sum_{j=1}^{N_t} Y_j = \widetilde{X}_{N_t}$$

is Lévy. Fix $0 \leq t_1 < \cdots < t_m$ and bounded measurable functions f_j . Using the properties of \widetilde{X} and N, we have that

$$E\left[\prod_{j=1}^{m} f_j(X_{t_j} - X_{t_{j-1}})\right] = E\left[\prod_{j=1}^{m} f_j(\widetilde{X}_{N_{t_j}} - \widetilde{X}_{N_{t_{j-1}}})\right]$$
$$= E\left[E\left[\prod_{j=1}^{m} f_j(\widetilde{X}_{N_{t_j}} - \widetilde{X}_{N_{t_{j-1}}}) \middle| \mathcal{F}_{\infty}^{N}\right]\right]$$
$$= E\left[E\left[\prod_{j=1}^{m} f_j(\widetilde{X}_{n_j} - \widetilde{X}_{n_{j-1}})\right]\Big|_{n_j = N_{t_j}}\right]$$
$$= E\left[\left(\prod_{j=1}^{m} E[f_j(\widetilde{X}_{n_j} - \widetilde{X}_{n_{j-1}})]\right)\Big|_{n_j = N_{t_j}}\right]$$
$$= E\left[\left(\prod_{j=1}^{m} E[f_j(\widetilde{X}_{n_j - n_{j-1}})]\right)\Big|_{n_j = N_{t_j}}\right].$$

Updated: May 13, 2025

Now defining the functions $g_j : \mathbb{N} \to \mathbb{R}$ by $g_j(n) := E[f_j(\widetilde{X}_n)]$, we have

$$E\left[\prod_{j=1}^{m} f_{j}(X_{t_{j}} - X_{t_{j-1}})\right] = E\left[\prod_{j=1}^{m} g_{j}(N_{t_{j}} - N_{t_{j-1}})\right]$$
$$= \prod_{j=1}^{m} E[g_{j}(N_{t_{j}} - N_{t_{j-1}})]$$
$$= \prod_{j=1}^{m} E[g_{j}(N_{t_{j}-t_{j-1}})]$$
$$= \prod_{j=1}^{m} E\left[E[f_{j}(\widetilde{X}_{n_{j}})]|_{n_{j}=N_{t_{j}-t_{j-1}}}\right]$$
$$= \prod_{j=1}^{m} E\left[E[f_{j}(\widetilde{X}_{N_{t_{j}-t_{j-1}}}) \mid \mathcal{F}_{\infty}^{N}]\right]$$
$$= \prod_{j=1}^{m} E[f_{j}(X_{t_{j}-t_{j-1}})].$$

By the same reasoning as in Exercise 6.3(a), we thus obtain that X is Lévy (since we also have $X_0 = 0$).

Next, we calculate the Lévy triplet. For $u \in \mathbb{R}^d$, we have

$$E[e^{iu^{\top}X_{t}}] = E\left[\sum_{n \ge 0} \mathbf{1}_{\{N_{t}=n\}} \prod_{j=1}^{n} e^{iu^{\top}Y_{j}}\right] = \sum_{n \ge 0} P[N_{t}=n](E[e^{iu^{\top}Y_{1}}])^{n}$$
$$= \sum_{n \ge 0} \frac{e^{-\lambda t} (\lambda t)^{n}}{n!} (E[e^{iu^{\top}Y_{1}}])^{n} = e^{-\lambda t} \exp(\lambda t E[e^{iu^{\top}Y_{1}}])$$
$$= \exp\left(\lambda t (E[e^{iu^{\top}Y_{1}}]-1)\right).$$

Let ν^{Y} be the distribution of Y_1 and $\nu := \lambda \nu^{Y}$. Then

$$\lambda(E[e^{iu^{\top}Y_{1}}]-1) = \lambda \int (e^{iu^{\top}x}-1) \,\mathrm{d}\nu^{Y}(x) = \int (e^{iu^{\top}x}-1) \,\mathrm{d}\nu(x).$$

Truncating as in the lecture notes, we can decompose

$$E[e^{\mathbf{i}u^{\top}X_{t}}] = \exp\left(t\int(e^{\mathbf{i}u^{\top}x}-1)\,\mathrm{d}\nu(x)\right)$$
$$= \exp\left(t\left(\int iu^{\top}x\mathbf{1}_{\{|x|\leqslant 1\}}\,\mathrm{d}\nu(x) + \int(e^{\mathbf{i}u^{\top}x}-1-iu^{\top}x\mathbf{1}_{\{|x|\leqslant 1\}})\,\mathrm{d}\nu(x)\right)\right).$$

Therefore, we obtain the triplet $(b, 0, \nu)$, where $b = \int_{\{x: |x| \leq 1\}} x \, d\nu(x)$.

(b) No. In fact, we can generalise the result to any random variable X_1 with compact support supp $(X_1) \subseteq [a, b]$, for some a < b. To this end, we claim that

Updated: May 13, 2025

if X_1 has compact support and is infinitely divisible, then X_1 is constant. This shows that there is no Lévy process X such that X_1 is uniformly distributed on [0, 1].

Now we prove the claim. By infinite divisibility, for each $n \in \mathbb{N}$, we have $X_1 = \sum_{j=1}^{n} Y_j^n$, where the random variables $(Y_j^n)_{j=1,\dots,n}$ are i.i.d. This implies that $\operatorname{supp}(Y_j^n) \subseteq [a/n, b/n]$. Indeed, suppose for contradiction $P[Y_j^n > b/n] > 0$. As the Y_j^n are i.i.d., we then have that

$$P[X_1 > b] \ge P\left[\bigcap_{j=1}^n \left\{Y_j^n > \frac{b}{n}\right\}\right] = \left(P\left[Y_j^n > \frac{b}{n}\right]\right)^n > 0,$$

which contradicts the fact that $\operatorname{supp}(X_1) \subseteq [a, b]$. The case $P[Y_j^n < a/n] > 0$ is analogous.

Since $\operatorname{supp}(Y_j^n) \subseteq [a/n, b/n]$, we have that $\operatorname{Var}[Y_j^n] \leq (b-a)^2/n^2$. Therefore we get $\operatorname{Var}[X_1] \leq (b-a)^2/n \to 0$ as $n \to \infty$, so that X_1 is constant, as claimed.

(c) We need to show that $(X_{t_1}, \ldots, X_{t_n})$ is independent of $(Y_{t_1}, \ldots, Y_{t_n})$ for any $n \in \mathbb{N}$ and $0 = t_0 < t_1 < \cdots < t_n$. This follows if we can show that the random variables

$$X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}, Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}}$$

are independent, because transformations of independent random variables are still independent. For $j = 1, \ldots, n$ and $u_j, v_j \in \mathbb{R}^d$, we have that

$$\begin{split} & E\bigg[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\bigg] \\ &= E\bigg[E\bigg[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})} \mid \mathcal{F}_{t_{n-1}}\bigg]\bigg] \\ &= E\bigg[E\big[e^{\mathrm{i}u_{j}^{\top}(X_{t_{n}}-X_{t_{n-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{n}}-Y_{t_{n-1}})} \mid \mathcal{F}_{t_{n-1}}]\prod_{j=1}^{n-1} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\bigg]. \end{split}$$

Since (X, Y) is a Lévy process with respect to \mathbb{F} , in particular so is $u_j^{\top} X + v_j^{\top} Y$, so that $u_j^{\top} (X_{t_n} - X_{t_{n-1}}) + v_j^{\top} (Y_{t_n} - Y_{t_{n-1}})$ is independent of $\mathcal{F}_{t_{n-1}}$ and has the same distribution as $u_j^{\top} X_{t_n-t_{n-1}} + v_j^{\top} Y_{t_n-t_{n-1}}$. Therefore, the expression above is equal to

$$E[e^{iu_{j}^{\top}X_{t_{n-t_{n-1}}}+iv_{j}^{\top}Y_{t_{n-t_{n-1}}}}]E\left[\prod_{j=1}^{n-1}e^{iu_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+iv_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right]$$

We can apply an inductive argument to the remaining product to obtain that

$$E\left[\prod_{j=1}^{n} e^{\mathrm{i}u_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})+\mathrm{i}v_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}\right] = \prod_{j=1}^{n} E\left[e^{\mathrm{i}u_{j}^{\top}X_{t_{j}-t_{j-1}}+\mathrm{i}v_{j}^{\top}Y_{t_{j}-t_{j-1}}}\right].$$

Updated: May 13, 2025

Finally, by the assumption on X and Y, we have that

$$\prod_{j=1}^{n} E[e^{iu_{j}^{\top}X_{t_{j}-t_{j-1}}+iv_{j}^{\top}Y_{t_{j}-t_{j-1}}}] = \prod_{j=1}^{n} E[e^{iu_{j}^{\top}X_{t_{j}-t_{j-1}}}]E[e^{iv_{j}^{\top}Y_{t_{j}-t_{j-1}}}]$$
$$= \prod_{j=1}^{n} E[e^{iu_{j}^{\top}(X_{t_{j}}-X_{t_{j-1}})}]E[e^{iv_{j}^{\top}(Y_{t_{j}}-Y_{t_{j-1}})}]$$

We have thus shown, as claimed, that the random variables

$$X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}, Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}}$$

are independent. In particular, the vectors

$$(X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}), (Y_{t_1} - Y_{t_0}, \ldots, Y_{t_n} - Y_{t_{n-1}})$$

are independent, and therefore so are $(X_{t_1}, \ldots, X_{t_n})$ and $(Y_{t_1}, \ldots, Y_{t_n})$. Now since $0 = t_0 < t_1 < \cdots < t_n$ were chosen arbitrarily, this shows that X and Y are independent, as required.

Exercise 12.3 Show that any RCLL function $f : \mathbb{R}_+ \to \mathbb{R}$ is bounded and has only countably many jumps on any compact interval.

Solution 12.3 For each $\varepsilon > 0$, define the set

$$D_{\varepsilon} := \{ t \ge 0 : |\Delta f(t)| \ge \varepsilon \}$$

of jumps of size at least ε . Fix $0 \leq a < b$. We claim that $[a, b] \cap D_{\varepsilon}$ is at most finite, so that f has at most finitely many jumps of size at least ε on the interval [a, b]. To this end, suppose for contradiction that $[a, b] \cap D_{\varepsilon}$ is infinite, and take a countable subset $(t_n)_{n \in \mathbb{N}} \subseteq [a, b] \cap D_{\varepsilon}$. Then $(t_n)_{n \in \mathbb{N}}$ is a bounded sequence of real numbers, and thus by the Bolzano–Weierstrass theorem, there is a convergent subsequence $(t_{n_k})_{k \in \mathbb{N}}$, say $t_{n_k} \to t_0$ as $k \to \infty$. By taking a further subsequence, we may assume without loss of generality that either $t_{n_k} < t$ for all $k \in \mathbb{N}$ or $t_{n_k} > t$ for all $k \in \mathbb{N}$. We first consider the case that $t_{n_k} < t$ for all $k \in \mathbb{N}$. By the existence of left limits of f, there is some $\delta > 0$ such that for all $s_1, s_2 \in (t_0 - \delta, t_0)$, we have $|f(s_1) - f(s_2)| < \varepsilon$. But also there is some $k \in \mathbb{N}$ with $t_{n_k} \in (t_0 - \delta, t_0)$, which would then contradict $t_{n_k} \in D_{\varepsilon}$. This completes the proof of the first case. Now the other case that $t_{n_k} > t$ for all $k \in \mathbb{N}$ is completely analogous, by the existence of right limits of f.

We have thus shown that $[a, b] \cap D_{\varepsilon}$ is (at most) finite. Now the set of all discontinuities of f is simply $\bigcup_{n=1}^{\infty} D_{1/n}$. As a countable union of finite sets is countable, we may conclude that f has only countably many jumps on [a, b].

It remains to show that f is bounded on [a, b]. Suppose for contradiction that f is unbounded on [a, b]. Then there exists a sequence $(t_n)_{n \in \mathbb{N}} \subseteq [a, b]$ with $f(t_n) \to \infty$ or

Updated: May 13, 2025

 $f(t_n) \to -\infty$ as $n \to \infty$. We may assume that $f(t_n) \to \infty$, as the case $f(t_n) \to -\infty$ follows analogously. By the Bolzano–Weierstrass theorem, there exists a convergent subsequence $(t_{n_k})_{k\in\mathbb{N}}$, say $t_{n_k} \to t$ as $k \to \infty$. By considering a further subsequence, we may assume that either $t_{n_k} < t$ for all $k \in \mathbb{N}$ or $t_{n_k} > t$ for all $k \in \mathbb{N}$. We first consider the case where $t_{n_k} < t$ for all $k \in \mathbb{N}$. By the existence of left limits of f, $\lim_{s\uparrow t} f(s) =: L$ exists (in \mathbb{R}). But since $f(t_n) \to \infty$, we also must have $f(t_{n_k}) \to \infty$, which contradicts the finiteness of L. As the case where $t_{n_k} > t$ for all $k \in \mathbb{N}$ is analogous, this completes the proof.