Brownian Motion and Stochastic Calculus Exercise Sheet 13

Submit by 12:00 on Wednesday, May 28 via the course homepage.

Exercise 13.1 Let X be a Lévy process with values in \mathbb{R}^d and $f_t(u) := E[e^{iu^\top X_t}]$. Recall that X is stochastically continuous, i.e., the map $t \mapsto X_t$ is continuous in probability, and that $f_{t+s}(u) = f_t(u)f_s(u)$ and $f_0(u) = 1$ for all $s, t \ge 0$ and $u \in \mathbb{R}^d$.

- (a) Show that $f_s(u)^n = f_{ns}(u)$ and $f_t(u) = f_{t/n}(u)^n$ for all $n \in \mathbb{N}$ and $s, t \ge 0$.
- (b) Show that $t \mapsto f_t(u)$ is right-continuous and $f_t(u) \neq 0$ for all $t \ge 0$ and $u \in \mathbb{R}^d$.
- (c) By using the central limit theorem, express a standard normal random variable Z as a weak limit of standardised compound Poisson random variables. Make the approximation as explicit as possible in terms of the compound Poisson distributions.

Solution 13.1

- (a) It follows by induction on n and from $f_{t+s}(u) = f_t(u)f_s(u)$ that $f_s(u)^n = f_{ns}(u)$ for any $s \ge 0$ and $n \in \mathbb{N}$. The second claim follows by setting s = t/n.
- (b) Right-continuity of $t \mapsto f_t(u)$ follows immediately from right-continuity of Xand the dominated convergence theorem. Assume that $f_t(u) = 0$ for some t > 0and $u \in \mathbb{R}^d$. Then it follows that $f_{t/n}(u)^n = f_t(u) = 0$, so that $f_{t/n}(u) = 0$ for all $n \in \mathbb{N}$. Taking $n \to \infty$, we obtain a contradiction to the right-continuity at 0 because $f_0(u) = 1$.
- (c) Recall that a random variable Y is a compound Poisson random variable if it can be written as

$$Y = \sum_{i=1}^{N} X_i,$$

where N is a Poisson random variable with rate $\lambda > 0$, and X_1, X_2, \ldots are i.i.d. random variables independent of N. Let $E[X_1] := \mu_X$ and $\operatorname{Var}[X_1] := \sigma_X^2$, which we assume are both finite. Now we have

$$E[Y] = E\left[E\left[\sum_{i=1}^{N} X_i \mid N\right]\right] = E\left[NE[X_1]\right] = E[N]E[X_1] = \lambda \mu_X.$$

Updated: May 20, 2025

1/6

Similarly, we have

$$E[Y^2] = E\left[E\left[\sum_{i=1}^N X_i^2 \middle| N\right]\right] + 2E\left[E\left[\sum_{1 \le i < j \le N} X_i X_j \middle| N\right]\right]$$
$$= E[N]E[X_1^2] + E[N(N-1)]E[X_1]^2,$$

where the last step uses independence of X_i and X_j , and that there are $\binom{N}{2} = \frac{N(N-1)}{2}$ pairs of (i, j) with $1 \leq i < j \leq N$. Therefore, we have

$$Var[Y] = E[Y^{2}] - E[Y]^{2}$$

= $E[N]E[X_{1}^{2}] + E[N^{2}]E[X_{1}]^{2} - E[N]E[X_{1}]^{2} - E[N]^{2}E[X_{1}]^{2}$
= $E[N]Var[X_{1}] + Var[N]E[X_{1}]^{2}$
= $\lambda(Var[X_{1}] + E[X_{1}]^{2})$
= $\lambda E[X_{1}^{2}].$

Now let Y_1, Y_2, \ldots be i.i.d. copies of Y. For each $n \in \mathbb{N}$, define the sum

$$S_n := \sum_{i=1}^n Y_i.$$

Then

$$E[S_n] = nE[Y] = n\lambda\mu_X$$

and

$$\operatorname{Var}[S_n] = n \operatorname{Var}[Y] = n \lambda E[X_1^2].$$

For the central limit theorem to be non-trivial, we require $\operatorname{Var}[Y] > 0$, so that $\lambda > 0$ and $E[X_1^2] > 0$, i.e. X_1 is not almost surely zero. The central limit theorem then guarantees that, weakly as $n \to \infty$,

$$\frac{S_n - E[S_n]}{\sqrt{\operatorname{Var}[S_n]}} = \frac{S_n - nE[Y]}{\sqrt{n\operatorname{Var}[Y]}} = \frac{S_n - n\lambda\mu_X}{\sqrt{n\lambda\mu_X}} \longrightarrow Z,$$

as required.

Exercise 13.2 Assume that $X = (X_t)_{t \ge 0}$ is a real-valued Lévy process with respect to $\mathbb{F} = (\mathcal{F})_{t \ge 0}$ and P and τ is a bounded stopping time. Using only the definition of a Lévy process, show that for all $u \in \mathbb{R}$ and $0 \le s < t$, we have

$$\frac{E[e^{iuX_{\tau+t}}]}{E[e^{iuX_{\tau+s}}]} = E[e^{iuX_{t-s}}].$$

Solution 13.2 We can always write $X_{\tau+t} - X_{\tau+s} = X_{\tau+s+(t-s)} - X_{\tau+s}$, and if τ is deterministic, this is independent of $X_{\tau+s}$ and has the same distribution as X_{t-s} .

Updated: May 20, 2025

This also holds for a bounded stopping time τ , but then we use more than the definition of a Lévy process. So we approximate τ and then pass to the limit.

To that end, for each $j, k \in \mathbb{N}$ define the set

$$A_k^{(j)} := \{ (k-1)2^{-j} \leqslant \tau < k2^{-j} \} \in \mathcal{F}_{k2^{-j}}.$$

Then define the stopping time

$$\tau_j := \sum_{k=1}^{\infty} k 2^{-j} \mathbf{1}_{A_k^{(j)}}.$$

This τ_j is indeed a stopping time since for any $t \ge 0$, there is a unique $K \in \mathbb{N}$ with $(K-1)2^{-j} \le t < K2^{-j}$, and so

$$\{\tau_j \leqslant t\} = \bigcup_{k=1}^{K-1} A_k^{(j)} \in \mathcal{F}_{(K-1)2^{-j}} \subseteq \mathcal{F}_t.$$

Moreover, one can see that $\tau_j \downarrow \tau$ *P*-a.s. as $j \to \infty$. Now fix $0 \leq s < t$. Since $\tau_j \downarrow \tau$ *P*-a.s. as $j \to \infty$, we have by the right-continuity of X that $e^{iuX_{\tau_j+t}} \to e^{iuX_{\tau+t}}$ *P*-a.s. as $j \to \infty$. As these random variables are bounded by 1, we may apply the dominated convergence theorem to get for any $u \in \mathbb{R}$ that

$$E[e^{iuX_{\tau+t}}] = \lim_{j \to \infty} E[e^{iuX_{\tau_j+t}}] = \lim_{j \to \infty} \sum_{k=1}^{\infty} E[e^{iuX_{k2}-j_{+t}} \mathbf{1}_{A_k^{(j)}}].$$

Now for each $j, k \in \mathbb{N}$, we write

$$\begin{split} E[e^{iuX_{k2-j+t}}\mathbf{1}_{A_k^{(j)}}] &= E[e^{iu(X_{k2-j+t}-X_{k2-j+s})}e^{iuX_{k2-j+s}}\mathbf{1}_{A_k^{(j)}}]\\ &= E[e^{iu(X_{k2-j+t}-X_{k2-j+s})}]E[e^{iuX_{k2-j+s}}\mathbf{1}_{A_k^{(j)}}], \end{split}$$

where the last step uses that the increment $X_{k2^{-j}+t} - X_{k2^{-j}+s}$ is independent of $\mathcal{F}_{k2^{-j}+s}$ and $e^{iuX_{k2^{-j}+s}}\mathbf{1}_{A_k^{(j)}}$ is $\mathcal{F}_{k2^{-j}+s}$ -measurable. As X has stationary increments, we have

$$E[e^{iu(X_{k2^{-j+t}}-X_{k2^{-j+s}})}] = E[e^{iuX_{t-s}}].$$

So putting the pieces together, we get

$$E[e^{iuX_{\tau+t}}] = E[e^{iuX_{t-s}}] \lim_{j \to \infty} \sum_{k=1}^{\infty} E[e^{iuX_{k2^{-j+s}}} \mathbf{1}_{A_k^{(j)}}]$$

= $E[e^{iuX_{t-s}}] \lim_{j \to \infty} E[e^{iuX_{\tau_j+s}}]$
= $E[e^{iuX_{t-s}}]E[e^{iuX_{\tau+s}}],$

where the last step again uses the dominated convergence theorem. This completes the proof.

Exercise 13.3

Updated: May 20, 2025

3 / 6

- (a) Let $\tilde{\nu}$ be a finite non-trivial measure supported on $[\varepsilon, \infty)$ for some $\varepsilon > 0$, and set $\tilde{\lambda} := \tilde{\nu}([\varepsilon, \infty)) > 0$. Suppose that $(N_t)_{t \ge 0}$ is a Poisson process with rate $\tilde{\lambda}$ and $(\tilde{Y}_n)_{n \in \mathbb{N}}$ are i.i.d. random variables with distribution $\tilde{\lambda}^{-1}\tilde{\nu}$. Check using Exercise 12.2(a) that the process $J_t^{\tilde{\nu}} := \sum_{j=1}^{N_t} \tilde{Y}_j$ is a Lévy process with Lévy triplet $(\tilde{b}, 0, \tilde{\nu})$, where $\tilde{b} = \int \mathbf{1}_{[-1,1]}(x) x \, d\tilde{\nu}(x)$.
- (b) Suppose that $\tilde{\nu}$ has compact support, i.e., $\tilde{\nu}((K, \infty)) = 0$ for some $K \in (0, \infty)$, so that $\tilde{\nu}([\varepsilon, K]) = \tilde{\lambda}$. Find a constant $\mu > 0$ such that the process $M^{\tilde{\nu}}$ defined by

$$M_t^{\widetilde{\nu}} := J_t^{\widetilde{\nu}} - \mu t$$

is a martingale. If $\tilde{\nu}$ is not compactly supported, under what assumption can we find such a constant μ ?

(c) For some K > 0, let ν be a measure supported on [0, K] such that $\nu(\{0\}) = 0$ and $\nu((\varepsilon, K]) < \infty$ for each $\varepsilon > 0$. Let $(a_m)_{m \in \mathbb{N}_0}$ be a sequence such that $a_0 = K$ and $a_m \downarrow 0$, and let $(\nu_m)_{m \in \mathbb{N}}$ be a sequence of measures that are absolutely continuous with respect to ν with respective densities $\frac{d\nu_m}{d\nu} = \mathbf{1}_{(a_m, a_{m-1}]}$. As in part (a), for each $m \in \mathbb{N}$, let $(N_t^m)_{t \ge 0}$ be a Poisson process with rate $C_m := \nu((a_m, a_{m-1}])$ and $(Y_n^m)_{n \in \mathbb{N}}$ be i.i.d. random variables with distribution $C_m^{-1}\nu_m$. We suppose that the N^m and Y_n^m are all independent, and define J^{ν_m} and M^{ν_m} as in parts (a) and (b).

Show that for each $k \in \mathbb{N}$, the process $J^k := \sum_{m=1}^k J^{\nu_m}$ is Lévy and find its Lévy triplet. Find a constant μ_k such that $M_t^k := J_t^k - \mu_k t$ is a martingale.

- (d) Suppose that $\int_0^K x^2 d\nu(x) < \infty$. For any T > 0, show that the sequence of stopped martingales $((M^k)^T)_{k \in \mathbb{N}}$ converges in \mathcal{H}_0^2 .
- (e) Under the assumption in part (d), does $(J^k)_{k \in \mathbb{N}}$ converge?

Solution 13.3

- (a) This is an immediate check from Exercise 12.2(a). Note that $J^{\tilde{\nu}}$ is a compound Poisson process, where the jumps \tilde{Y}_n have distribution $F = \tilde{\lambda}^{-1}\tilde{\nu}$. Therefore, $J^{\tilde{\nu}}$ is a Lévy process with triplet $(\tilde{b}, 0, \tilde{\lambda}\tilde{\lambda}^{-1}\tilde{\nu}) = (\tilde{b}, 0, \tilde{\nu})$, as required.
- (b) Note that $(J_t^{\widetilde{\nu}} \mu t)_{t \ge 0}$ is a Lévy process for any $\mu > 0$. Moreover, $J_1^{\widetilde{\nu}} \in L^1$ because $J^{\widetilde{\nu}}$ is a compound Poisson process and $\widetilde{Y}_1 \in L^1$, since it has compact support. Therefore, it is enough to check that $E[J_1^{\widetilde{\nu}} \mu] = 0$. Indeed, we have by independence that

$$E[J_1^{\widetilde{\nu}}] = E\left[\sum_{n=1}^{N_1} Y_n\right] = E\left[E\left[\sum_{n=1}^{\widehat{n}} Y_n\right]\Big|_{\widehat{n}=N_1}\right]$$
$$= E\left[N_1\widetilde{\lambda}^{-1}\int_{\varepsilon}^{K} x \,\mathrm{d}\widetilde{\nu}(x)\right] = \int_{\varepsilon}^{K} x \,\mathrm{d}\widetilde{\nu}(x).$$

Updated: May 20, 2025

4 / 6

For $\mu = \int_{\varepsilon}^{K} x \, d\tilde{\nu}(x)$, we thus have that $J_{1}^{\tilde{\nu}} - \mu$ is integrable with $E[J_{1}^{\tilde{\nu}} - \mu] = 0$. Therefore, $M^{\tilde{\nu}}$ is a martingale by Proposition 5.2.2 of the notes. If $\tilde{\nu}$ is not compactly supported, we can still find $\mu = \int_{\varepsilon}^{\infty} x \, d\tilde{\nu}(x)$ by the same argument, as long as the integral is finite.

(c) It follows immediately from part (a) that each J^{ν_m} is a Lévy process with triplet $(b_m, 0, \nu_m)$. Moreover, the $(J^{\nu_m})_{m \in \mathbb{N}}$ are independent by construction. One easily checks that the sum of independent Lévy processes $J^k := \sum_{m=1}^k J^{\nu_m}$ is also Lévy. Moreover, J^k has the Lévy triplet $(\hat{b}_k, 0, \sum_{m=1}^k \nu_m) = (\hat{b}_k, 0, \hat{\nu}_k)$, where $\hat{\nu}_k$ has density $\frac{d\hat{\nu}_k}{d\nu} = \mathbf{1}_{(a_k,K]}$ and $\hat{b}_k = \int \mathbf{1}_{[-1,1]}(x) x \, d\hat{\nu}_k(x)$. As in (b), we have that μ_k is given by

$$\mu_k = \int x \, \mathrm{d}\hat{\nu}_k(x) = \int \mathbf{1}_{(a_m,K]}(x) x \, \mathrm{d}\nu(x).$$

(d) We show that $(M^k)_{k\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{H}_0^2 . Note first that we have $\|M^T\|_{\mathcal{H}_0^2} = E[[M]_T]$ and each M^k has finite variation. Also, by independence, the probability of two of the processes $J^{\nu_m}, J^{\nu_{m'}}$ jumping simultaneously is 0. Therefore, for $k' \ge k$, we can compute

$$\begin{split} E\Big[[M^{k'} - M^k]_T\Big] &= E\Big[\sum_{0 < s \leq T} \Delta (M^{k'} - M^k)_s^2\Big] \\ &= E\Big[\sum_{0 < s \leq T} \sum_{m=k+1}^{k'} (\Delta J_s^{\nu_m})^2\Big] \\ &= E\Big[\sum_{m=k+1}^{k'} \sum_{n=1}^{N_T^m} (Y_n^m)^2\Big] \\ &= \sum_{m=k+1}^{k'} E\Big[E\Big[\sum_{n=1}^{\hat{n}} (Y_n^m)^2\Big]\Big|_{\hat{n} = N_T^m}\Big] \\ &= \sum_{m=k+1}^{k'} E\Big[N_T^m(\lambda_m)^{-1} \int \mathbf{1}_{(a_m, a_{m-1}]}(x) x^2 \,\mathrm{d}\nu(x)\Big] \\ &= \sum_{m=k+1}^{k'} \int \mathbf{1}_{(a_m, a_{m-1}]}(x) x^2 \,\mathrm{d}\nu(x) \\ &= \int \mathbf{1}_{(a_{k'}, a_k]}(x) x^2 \,\mathrm{d}\nu(x) \\ &\leqslant \int \mathbf{1}_{[0, a_k]}(x) x^2 \,\mathrm{d}\nu(x). \end{split}$$

Since we assume that $\int_0^K x^2 d\nu(x) < \infty$, it follows from the dominated convergence theorem that $\lim_{k\to\infty} \sup_{k'\geq k} E[[M^{k'} - M^k]_T] = 0$. Thus $((M^k)^T)_{k\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{H}_0^2 and is therefore convergent.

(e) No, $(J^k)_{k\in\mathbb{N}}$ is not convergent in general. As a counterexample, we let ν have density with respect to Lebesgue measure $\frac{d\nu(x)}{dx} = \mathbf{1}_{(0,1]}(x)x^{-2}$. Setting

Updated: May 20, 2025

 $a_m = e^{-m}$, we have that

$$\mu_k = \int_{e^{-k}}^1 x^{-1} \, \mathrm{d}x = [\log x]_{e^{-k}}^1 = k \to \infty.$$

As $((M^k)^1)_{k\in\mathbb{N}}$ converges in \mathcal{H}^2_0 , in particular (M^k_1) converges in probability. But since $(\mu_k)_{k\in\mathbb{N}}$ diverges, it follows that $(J^k)_{k\in\mathbb{N}}$ cannot converge, as claimed.