Brownian Motion and Stochastic Calculus Exercise Sheet 1

Submit by 12:00 on Wednesday, February 26 via the course homepage.

Exercise 1.1 (Monotone class theorem) Let (Ω, \mathcal{F}, P) be a probability space and $X, Y : \Omega \to \mathbb{R}$ random variables. Use the monotone class theorem to show that a random variable Z is $\sigma(X, Y)$ -measurable if and only if it is of the form Z = f(X, Y) for some (Borel)-measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.

Hint: It may be helpful to start by assuming that Z is bounded.

Solution 1.1 Since the random variable Z = f(X, Y) is $\sigma(X, Y)$ -measurable for any measurable $f : \mathbb{R}^2 \to \mathbb{R}$, it only remains to prove the converse.

Define the sets \mathcal{H} and \mathcal{M} by

 $\mathcal{H} := \{ Z = f(X, Y) : Z \text{ bounded}, f : \mathbb{R}^2 \to \mathbb{R} \text{ measurable} \}, \\ \mathcal{M} := \{ \mathbf{1}_{\{X \in A\}} \mathbf{1}_{\{Y \in B\}} : A, B \in \mathcal{B}(\mathbb{R}) \}.$

We check that \mathcal{H} and \mathcal{M} satisfy the conditions of the monotone class theorem. It is clear that \mathcal{M} is closed under multiplication, and that \mathcal{H} is a real vector space of bounded functions that contains \mathcal{M} and the constant function 1. It remains to check that \mathcal{H} is closed under monotone bounded convergence. To this end, suppose that $(Z_k)_{k\in\mathbb{N}}$ is a nondecreasing sequence of nonnegative random variables where each Z_k is of the form $Z_k = f_k(X, Y)$ for some measurable $f_k : \mathbb{R}^2 \to \mathbb{R}$. Suppose moreover that $Z := \sup_{k\in\mathbb{N}} Z_k = \lim_{k\to\infty} Z_k$ is bounded. Let C > 0 be an upper bound on Z, and define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) := \sup_{k \in \mathbb{N}} f_k(x,y) \wedge C.$$

Then f is measurable and Z = f(X, Y), so that $Z \in \mathcal{H}$. As $\sigma(\mathcal{M}) = \sigma(X, Y)$, the monotone class theorem asserts that \mathcal{H} contains all bounded $\sigma(X, Y)$ -measurable random variables. It now only remains to show that any (not necessarily bounded) $\sigma(X, Y)$ -measurable random variable is of the form f(X, Y) for some measurable $f : \mathbb{R}^2 \to \mathbb{R}$.

So consider a $\sigma(X, Y)$ -measurable random variable Z. By writing $Z = Z^+ - Z^-$ and arguing for Z^+ (and analogously for Z^-), we may assume without loss of generality that $Z \ge 0$. For each $n \in \mathbb{N}$, let $Z^n := Z \wedge n$. Then Z^n is $\sigma(X, Y)$ -measurable

Updated: February 19, 2025

and bounded random variable, and so there exists measurable $f^n : \mathbb{R}^2 \to \mathbb{R}$ such that $Z^n = f^n(X, Y)$. By construction, we have $Z^n \to Z$ pointwise. Moreover, the sequence $(Z^n)_{n \in \mathbb{N}}$ is increasing, so that $f^n(X, Y) \leq f^{n+1}(X, Y)$ for each $n \in \mathbb{N}$. Thus, by defining $h^{n+1} := f^n \vee f^{n+1}$, we have $h^{n+1}(X, Y) = f^{n+1}(X, Y)$. Now $(h^n)_{n \in \mathbb{N}}$ is an increasing sequence of functions, and thus $h := \lim_{n \to \infty} h^n = \sup_{n \in \mathbb{N}} h^n$ exists. As the h^n are measurable, so is h, and we have

$$h(X,Y) = \lim_{n \to \infty} h^n(X,Y) = \lim_{n \to \infty} f^n(X,Y) = \lim_{n \to \infty} Z^n = Z.$$

This completes the proof.

Exercise 1.2 (Modifications and indistinguishability) Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t \ge 0}$ and $Y = (Y_t)_{t \ge 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Recall that two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be modifications of each other if $P[Z_t = Z'_t] = 1$ for each $t \ge 0$, while Z and Z' are indistinguishable if $P[Z_t = Z'_t \text{ for all } t \ge 0] = 1$.

- (a) Assume that X and Y are both P-a.s. right-continuous or both P-a.s. leftcontinuous. Show that the processes are modifications of each other if and only if they are indistinguishable.
- (b) Give an example showing that one of the implications in part (a) does not hold for general stochastic processes X and Y.

Solution 1.2

(a) For a fixed $t_0 \ge 0$, we have

$$\{X_{t_0} = Y_{t_0}\} \supseteq \{X_t = Y_t \text{ for all } t \ge 0\}.$$

So if X and Y are indistinguishable, it follows that $P[X_{t_0} = Y_{t_0}] = 1$, so that X and Y are modifications of each other.

Conversely, suppose that X is a modification of Y. We need to show that if X and Y are both right-continuous, then they are indistinguishable (the proof for the left-continuous case is analogous). Consider the set

$$A := \bigcap_{t \in \mathbb{Q}_+} \{ \omega \in \Omega : X_t(\omega) = Y_t(\omega) \}$$
$$= \{ \omega \in \Omega : X_t(\omega) = Y_t(\omega) \text{ for all } t \in \mathbb{Q}_+ \}.$$

Since X and Y are modification of each other and the above intersection is countable, it follows that P[A] = 1 (as the countable intersection of probability-1 events is a probability-1 event). Let B be a probability-1 event on which X and Y are both right-continuous, and define the probability-1 event C by

$$C := A \cap B$$

= {\omega \in \Omega : X_t(\omega) = Y_t(\omega) for all t \in \mathbb{Q}_+, X_.(\omega) and Y_.(\omega) right-cts}.

Updated: February 19, 2025

2/5

Now fix $\omega \in C$ and take some $t_0 \ge 0$. Since $X_{\cdot}(\omega)$ and $Y_{\cdot}(\omega)$ are rightcontinuous, then for some (any) decreasing sequence of rationals $(t_n)_{n\in\mathbb{N}}$ with $t_n \downarrow t_0$, we have

$$X_{t_0}(\omega) = \lim_{n \to \infty} X_{t_n}(\omega) = \lim_{n \to \infty} Y_{t_n}(\omega) = Y_{t_0}(\omega),$$

where the second equality above follows from the fact that $X_t(\omega) = Y_t(\omega)$ for all $t \in \mathbb{Q}_+$. We have thus shown that

 $\{\omega \in \Omega : X_t(\omega) = Y_t(\omega) \text{ for all } t \ge 0\} \supseteq C,$

implying that $P[X_t = Y_t \text{ for all } t \ge 0] = 1$. (To be precise, we have shown that the complement of the set $\{X_t = Y_t \text{ for all } t \ge 0\}$ is contained in a *P*-nullset and thus has outer *P*-measure 0.) This completes the proof.

(b) Take $\Omega = [0, \infty)$, $\mathcal{F} = \mathcal{B}([0, \infty))$ the Borel σ -algebra, and P a probability measure with $P[\{\omega\}] = 0$, $\forall \omega \in \Omega$ (for instance, the exponential distribution).

Set $X \equiv 0$ and

$$Y_t(\omega) = \begin{cases} 1, & \omega = t, \\ 0, & \text{otherwise.} \end{cases}$$

Then for each $t \ge 0$, we have

$$P[X_t \neq Y_t] = P[Y_t = 1] = P[\{t\}] = 0$$

so that X and Y are modifications of each other. However,

 $P[X_t = Y_t \text{ for all } t \ge 0] = P[Y_t = 0 \text{ for all } t \ge 0] = P[\emptyset] = 0,$

and thus X and Y are not indistinguishable. Note here that Y is neither right-continuous nor left-continuous, as we should expect.

Exercise 1.3 (Measurability of stochastic processes) Let $X = (X_t)_{t \ge 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- (a) Show that every progressively measurable process is product-measurable and adapted.
- (b) Assume that X is adapted and *every* path of X is right-continuous. Show that X is progressively measurable.

Remark: The same conclusion holds true if every path of X is left-continuous.

Hint: For fixed $t \ge 0$, consider the approximating sequence of processes Y^n on $\Omega \times [0, t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=0}^{2^n - 1} \mathbf{1}_{(tk2^{-n}, t(k+1)2^{-n}]}(u) X_{t(k+1)2^{-n}}$ for $u \in (0, t]$.

Updated: February 19, 2025

3 / 5

- (c) Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- (d) Use the monotone class theorem to show that every optional process is progressively measurable.

Solution 1.3

(a) Suppose that X is progressively measurable, so that for each $t \ge 0$, $X|_{\Omega \times [0,t]}$ is $\mathcal{F}_t \otimes \mathcal{B}[0,t]$ -measurable. For fixed $t \ge 0$, the map

$$i_t : (\Omega, \mathcal{F}_t) \to (\Omega \times [0, t], \mathcal{F}_t \otimes \mathcal{B}[0, t]), \\ \omega \mapsto (\omega, t)$$

is measurable, and thus $X_t = X \circ i_t$ is \mathcal{F}_t -measurable. Moreover, the processes X^n defined by $X_t^n := X|_{\Omega \times [0,n]} \mathbf{1}_{[0,n]}(t), t \ge 0$, are $\mathcal{F} \otimes \mathcal{B}[0, \infty)$ -measurable. Since $X^n \to X$ pointwise (in (t, ω)) as $n \to \infty$, also X is $\mathcal{F} \otimes \mathcal{B}[0, \infty)$ -measurable.

- (b) Fix $t \ge 0$ and consider the sequence of processes Y^n on $\Omega \times [0, t]$ as in the hint. By construction, each Y^n is $\mathcal{F}_t \otimes \mathcal{B}[0, t]$ -measurable. Since X is right-continuous, we have $Y^n \to X|_{\Omega \times [0,t]}$ pointwise as $n \to \infty$, and thus $X|_{\Omega \times [0,t]}$ is also $\mathcal{F}_t \otimes \mathcal{B}[0, t]$ -measurable, as required.
- (c) Let X be adapted with all paths being RCLL. For each $n \in \mathbb{N}$, consider the processes $X^n := (X \wedge n) \vee (-n)$. Each X^n is bounded and RCLL, and thus $\sigma(\mathcal{M})$ -measurable. But as $X^n \to X$ pointwise (in $((t, \omega))$, X is also $\sigma(\mathcal{M})$ -measurable. It follows immediately that $\mathcal{O} \subseteq \sigma(\mathcal{M})$, and as $\sigma(\mathcal{M}) \subseteq \mathcal{O}$, this completes the proof.
- (d) It suffices to show that all bounded optional processes are progressively measurable, since for a general optional process X, we then have that $X^n := X \mathbf{1}_{\{|X| \leq n\}}$, a bounded optional process, is progressively measurable, which then implies that X is also progressively measurable because $X^n \to X$ pointwise.

So let \mathcal{H} denote the real vector space of bounded and progressively measurable processes. By part (b), we have $\mathcal{H} \supseteq \mathcal{M}$, and of course \mathcal{H} contains the constant process 1 and is closed under monotone bounded convergence. Also, \mathcal{M} is closed under multiplication. The monotone class theorem then yields that every bounded $\sigma(\mathcal{M})$ -measurable process is contained in \mathcal{H} . By part (c), we can then conclude that every bounded optional process is progressively measurable. This completes the proof.

Exercise 1.4 (Transformations of Brownian motion) Let $W = (W_t)_{t \ge 0}$ be a Brownian motion.

- (a) Show that $(-W_t)_{t\geq 0}$ is a Brownian motion.
- (b) Show that for any $c \neq 0$, $(cW_{t/c^2})_{t \geq 0}$ is also a Brownian motion.

Solution 1.4

(a) We have $P[-W_0 = 0] = P[W_0 = 0] = 1$, so that (BM1) holds. Next, for any fixed $n \in \mathbb{N}$ and $0 \leq t_0 < t_1 < \cdots < t_n$, the increments $W_{t_i} - W_{t_{i-1}}$, $i = 1, \ldots, n$, are independent and distributed $\mathcal{N}(0, t_i - t_{i-1})$. We then have that the increments

$$-W_{t_i} - (-W_{t_{i-1}}) = -(W_{t_i} - W_{t_{i-1}})$$

are independent (as the map $x \mapsto -x$ is measurable on \mathbb{R} , and independence is preserved under measurable transformations) and $\sim \mathcal{N}(0, t_i - t_{i-1})$. Thus (BM2') holds. Lastly, *P*-almost all trajectories $t \mapsto -W_t(\omega)$ are continuous, since for any $\omega \in \Omega$ with $t \mapsto W_t(\omega)$ being continuous, we also have that $t \mapsto -W_t(\omega)$ is continuous, and hence (BM3) holds. We thus have that -W is a Brownian motion.

(b) We have $P[cW_{0/c^2} = 0] = P[cW_0 = 0] = P[W_0 = 0] = 1$, so that (BM1) holds. Next fix $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < \cdots < t_n$. We can write

$$cW_{t_i/c^2} - cW_{t_{i-1}/c^2} = c(W_{t_i/c^2} - W_{t_{i-1}/c^2}).$$

We know that $W_{t_i/c^2} - W_{t_{i-1}/c^2} \sim \mathcal{N}(0, t_i/c^2 - t_{i-1}/c^2)$, and thus we have $cW_{t_i/c^2} - cW_{t_{i-1}/c^2} \sim \mathcal{N}(0, t_i - t_{i-1})$. Moreover, the increments $W_{t_i/c^2} - W_{t_{i-1}/c^2}$, $i = 1, \ldots, n$, are independent (as $0 \leq t_0/c^2 < t_1/c^2 < \cdots < t_n/c^2$), and thus so are $cW_{t_i/c^2} - cW_{t_{i-1}/c^2}$, $i = 1, \ldots, n$, since the map $x \mapsto cx$ is measurable on \mathbb{R} . Thus (BM2') holds. Lastly, for each ω with $t \mapsto W_t(\omega)$ continuous, we have that $t \mapsto cW_{t/c^2}(\omega)$ is also continuous, as it is a composition of continuous functions. Thus (BM3) holds, completing the proof.

Updated: February 19, 2025