Brownian Motion and Stochastic Calculus Exercise Sheet 2

Submit by 12:00 on Wednesday, March 5 via the course homepage.

Exercise 2.1 (Equivalent definitions of Brownian motion) Let X be a stochastic process on a probability space (Ω, \mathcal{F}, P) with $X_0 = 0$ P-a.s., and let $\mathbb{F}^X = (\mathcal{F}_t^X)_{t \ge 0}$ denote the (raw) filtration generated by X, i.e., $\mathcal{F}_t^X = \sigma(X_s; s \le t)$. Show that the following two properties are equivalent:

- (i) X has independent increments, i.e., for all $n \in \mathbb{N}$ and $0 \leq t_0 < t_1 < \cdots < t_n$, the increments $X_{t_i} X_{t_{i-1}}$, $i = 1, \ldots, n$, are independent.
- (ii) X has \mathbb{F}^X -independent increments, i.e., $X_t X_s$ is independent of \mathcal{F}_s^X whenever $t \ge s$.

Remark: This shows the equivalence of the properties (BM2) and (BM2') of Brownian motion.

Hint: For proving "(i) \Rightarrow (ii)", you might use the monotone class theorem. When choosing the set \mathcal{H} , recall that a random variable Y is independent of a σ -algebra \mathcal{G} if and only if E[g(Y)Z] = E[g(Y)]E[Z] for all bounded measurable functions $g: \mathbb{R} \to \mathbb{R}$ and bounded \mathcal{G} -measurable random variables Z.

Exercise 2.2 (Hölder continuity of Brownian paths) For a fixed $\alpha > 0$, a function $f: D \subseteq \mathbb{R} \to \mathbb{R}$ is called *locally* α -Hölder-continuous at a point $x \in D$ if there exist $\delta > 0$ and C > 0 such that $|f(x) - f(y)| \leq C|x - y|^{\alpha}$ for all $y \in D$ with $|x - y| \leq \delta$. If f is locally α -Hölder-continuous at every $x \in D$, we say that f is locally α -Hölder-continuous.

- (a) Let $Z \sim \mathcal{N}(0, 1)$. Show that $P[|Z| \leq \varepsilon] \leq \varepsilon$ for any $\varepsilon \geq 0$.
- (b) Let W be a Brownian motion. Prove that for any $\alpha > \frac{1}{2}$, P-almost all paths of W are nowhere locally α -Hölder-continuous on [0, 1].

Hint: Take any $M \in \mathbb{N}$ satisfying $M(\alpha - \frac{1}{2}) > 1$ and show that the set $\{W_{\cdot}(\omega) \text{ is locally } \alpha\text{-Hölder at some } s \in [0,1]\}$ is contained in the set $\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0,\dots,n-M} \bigcap_{j=1}^{M} \{|W_{\frac{k+j}{n}}(\omega) - W_{\frac{k+j-1}{n}}(\omega)| \leq C\frac{1}{n^{\alpha}}\}.$

(c) The Kolmogorov–Čentsov theorem states that a stochastic process X on [0, T] satisfying

$$E[|X_t - X_s|^{\gamma}] \leqslant C |t - s|^{1+\beta}, \quad s, t \in [0, T],$$

Updated: February 25, 2025

1/2

for some fixed $\gamma, \beta, C > 0$ has a version which is locally α -Hölder-continuous for each $\alpha < \beta/\gamma$. Use this result to deduce that Brownian motion is *P*-a.s. locally α -Hölder-continuous for every $\alpha < 1/2$.

Remark: One can also show that the Brownian paths are *not* locally 1/2-Hölder-continuous. The exact modulus of continuity was found by P. Lévy.

Exercise 2.3 (A new Brownian motion) Let (Ω, \mathcal{F}, P) be a probability space, $W = (W_t)_{t \ge 0}$ a Brownian motion on (Ω, \mathcal{F}, P) , Z a random variable independent of W and $s \in (0, \infty)$ a fixed time. We define the stochastic process $V = (V_t)_{t \ge 0}$ by

$$V_t := W_t \mathbf{1}_{\{t < s\}} + \left(W_s + Z(W_t - W_s) \right) \mathbf{1}_{\{t \ge s\}}.$$

Find all possible distributions of Z such that V is a Brownian motion.

Exercise 2.4 (Blumenthal's 0-1 law)

(a) Let W be a Brownian motion on a probability space (Ω, \mathcal{F}, P) with natural filtration $(\mathcal{F}_t)_{t \ge 0}$, i.e. $\mathcal{F}_t = \sigma(W_s, 0 \le s \le t)$. Consider the σ -field

$$\mathcal{F}_{0+} := \bigcap_{t>0} \mathcal{F}_t.$$

Establish Blumenthal's 0-1 law: for $A \in \mathcal{F}_{0+}$, either P[A] = 0 or P[A] = 1.

(b) Show that

$$P\left[\limsup_{t\downarrow 0}\frac{W_t}{\sqrt{t}}=\infty\right]=1.$$

Hint: Start by showing that for each C > 0,

$$\lim_{t \downarrow 0} P\left[\sup_{0 \leqslant s \leqslant t} (W_s - C\sqrt{s}) > 0\right] > 0$$

and then use part (a).