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Exercise 2.1 (Equivalent definitions of Brownian motion) Let X be a stochastic
process on a probability space (Ω, F , P ) with X0 = 0 P -a.s., and let FX = (FX

t )t⩾0
denote the (raw) filtration generated by X, i.e., FX

t = σ (Xs; s ⩽ t). Show that the
following two properties are equivalent:

(i) X has independent increments, i.e., for all n ∈ N and 0 ⩽ t0 < t1 < · · · < tn, the
increments Xti

− Xti−1 , i = 1, . . . , n, are independent.

(ii) X has FX-independent increments, i.e., Xt − Xs is independent of FX
s whenever

t ⩾ s.

Remark: This shows the equivalence of the properties (BM2) and (BM2′) of
Brownian motion.

Hint: For proving “(i) ⇒ (ii)”, you might use the monotone class theorem. When
choosing the set H, recall that a random variable Y is independent of a σ-algebra
G if and only if E[g(Y )Z] = E[g(Y )]E[Z] for all bounded measurable functions
g : R → R and bounded G-measurable random variables Z.

Solution 2.1 First, assume that (ii) holds. We use induction on n to show (i)
holds. The base case n = 1 is trivial. Now fix n ⩾ 2, 0 ⩽ t0 < t1 < · · · < tn and
A1, . . . , An ∈ B(R). By (ii), we know that Xtn − Xtn−1 is independent of FX

tn−1 , and
therefore

P

[
n⋂

i=1
{Xti

− Xti−1 ∈ Ai}
]

= P

[
n−1⋂
i=1

{Xti
− Xti−1 ∈ Ai}

]
P [Xtn − Xtn−1 ∈ An].

By the induction hypothesis,

P

[
n−1⋂
i=1

{Xti
− Xti−1 ∈ Ai}

]
=

n−1∏
i=1

P [Xti
− Xti−1 ∈ A],

so that
P

[
n⋂

i=1
{Xti

− Xti−1 ∈ Ai}
]

=
n∏

i=1
P [Xti

− Xti−1 ∈ A],

as required.
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Conversely, assume (i) holds and fix 0 ⩽ s ⩽ t. Define the set M by

M :=
{

n∏
i=1

hi(Xsi
) : hi : R → R bdd measurable, 0 ⩽ s1 < · · · < sn ⩽ s, n ∈ N

}
.

Then M is a family of bounded real-valued functions on Ω which is closed under
multiplication. Moreover, we have σ(M) = FX

s .

Now let H denote the set of all bounded and FX
s -measurable random variables Z

satisfying

E[g(Xt − Xs)Z] = E[g(Xt − Xs)]E[Z], ∀g : R → R bounded measurable.

Then H contains the constant function 1. By the dominated convergence theorem,
we can see that H is also closed under (monotone) bounded convergence. To apply
the monotone class theorem, it only remains to show H ⊇ M.

To this end, fix some Z = ∏n
i=1 hi(Xsi

) ∈ M and define the measurable function
h : Rn → R by h(x1, . . . , xn) = ∏n

i=1 hi(xi). Then we can write Z = h(Xs1 , . . . , Xsn).
Remembering X0 = 0 P -a.s., there exists some linear transformation L : Rn → Rn

with

(Xs1 , . . . , Xsn) = L(Xs1 − X0, Xs2 − Xs1 , . . . , Xsn − Xsn−1) P -a.s.

So we can write Z = (h ◦ L)(Xs1 − X0, Xs2 − Xs1 , . . . , Xsn − Xsn−1). Since Xt − Xs

is independent of (Xs1 − X0, Xs2 − Xs1 , . . . , Xsn − Xsn−1) and h ◦ L is measurable,
also Xt − Xs is independent of Z. It then follows immediately that for any bounded
measurable g : R → R,

E[g(Xt − Xs)Z] = E[g(Xt − Xs)]E[Z].

We thus have Z ∈ H, and as Z ∈ M was arbitrary, we have shown that M ⊆ H. So
by the monotone class theorem, H contains every bounded FX

s -measurable random
variable. From the hint, we conclude that Xt − Xs is independent of FX

s . This
completes the proof.

Exercise 2.2 (Hölder continuity of Brownian paths) For a fixed α > 0, a function
f : D ⊆ R → R is called locally α-Hölder-continuous at a point x ∈ D if there
exist δ > 0 and C > 0 such that |f(x) − f(y)| ⩽ C|x − y|α for all y ∈ D with
|x − y| ⩽ δ. If f is locally α-Hölder-continuous at every x ∈ D, we say that f is
locally α-Hölder-continuous.

(a) Let Z ∼ N (0, 1). Show that P [|Z| ⩽ ε] ⩽ ε for any ε ⩾ 0.

(b) Let W be a Brownian motion. Prove that for any α > 1
2 , P -almost all paths of

W are nowhere locally α-Hölder-continuous on [0, 1].

Hint: Take any M ∈ N satisfying M(α − 1
2) > 1 and show that the set

{W.(ω) is locally α-Hölder at some s ∈ [0, 1]} is contained in the set⋃
C∈N

⋃
m∈N

⋂
n⩾m

⋃
k=0,...,n−M

⋂M
j=1{|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C 1

nα }.
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(c) The Kolmogorov–Čentsov theorem states that a stochastic process X on [0, T ]
satisfying

E[|Xt − Xs|γ] ⩽ C |t − s|1+β, s, t ∈ [0, T ],
for some fixed γ, β, C > 0 has a version which is locally α-Hölder-continuous
for each α < β/γ. Use this result to deduce that Brownian motion is P -a.s.
locally α-Hölder-continuous for every α < 1/2.

Remark: One can also show that the Brownian paths are not locally 1/2-
Hölder-continuous. The exact modulus of continuity was found by P. Lévy.

Solution 2.2

(a) We have

P [|Z| ⩽ ε] = P [−ε ⩽ Z ⩽ ε] =
∫ ε

−ε

1√
2π

e−x2/2 dx ⩽
∫ ε

−ε

1√
2π

dx = 2√
2π

ε ⩽ ε,

as required.

(b) Fix α > 1
2 and let M ∈ N satisfy M(α − 1

2) > 1. Following the hint, suppose
that ω ∈ Ω is such that W.(ω) is locally α-Hölder-continuous at some s ∈ [0, 1].
Then there exist δ > 0 and C ∈ N such that |Wt(ω)−Ws(ω)| ⩽ C|t−s|α for all
|t − s| < δ. Note that there is some m ∈ N large enough so that for all n ⩾ m,
taking k ∈ {0, . . . , n − M} minimal with k

n
> s − δ gives k+j

n
∈ (s − δ, s + δ)

for all j = 0, . . . , M . It follows that the set

{W.(ω) is locally α-Hölder at some s ∈ [0, 1]}

is contained in the set

B :=
⋃

C∈N

⋃
m∈N

⋂
n⩾m

⋃
k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

}
,

since for each j = 1, . . . , M , we have |k+j
n

− k+j−1
n

| = 1
n
. It thus suffices to show

that B is a nullset.

Since the increments W k+j
n

− W k+j−1
n

, j = 1, . . . , M , are i.i.d. ∼ N (0, 1
n
), we

can write, for Z ∼ N (0, 1),

P

 M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

} = P
[
|Z| ⩽ C

nα−1/2

]M

.

Part (a) then gives

P

 M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

} ⩽ CMn−M(α− 1
2 ). (1)
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Now if we set

Dm :=
⋂

n⩾m

⋃
k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

}
,

then for each n ⩾ m, we have

Dm ⊆
⋃

k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

}
.

So by using (4) and remembering that M(α − 1
2) > 1, we get

P [Dm] ⩽ lim sup
n→∞

P

 ⋃
k=0,...,n−M

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ⩽ C

1
nα

}
⩽ lim sup

n→∞
(n − M + 1)CM n−M(α− 1

2 )

= 0.

As
B =

⋃
C∈N

⋃
m∈N

Dm

is a countable union of nullsets, we conclude that P [B] = 0, as claimed.

(c) Fix 0 ⩽ s < t. We have Wt − Ws ∼ N (0, t − s), and for each n ∈ N,

E[|Wt − Ws|2n] = |t − s|nE[Z2n] := C2n|t − s|n,

where Z ∼ N (0, 1) and C2n := E[Z2n] < ∞. Setting γn := 2n and βn := n − 1,
we can write

E[|Wt − Ws|γn ] = C2n|t − s|1+βn .

Now fix α < 1
2 . Since βn

γn ↑ 1
2 , there exists N ∈ N such that α < βN

γN
. We can

then apply the Kolmogorov–Čentsov theorem for this N to conclude that W
has a locally α-Hölder-continuous version.

Now since both W and this locally α-Hölder-continuous version are continuous,
we can apply Exercise 1.2(a) to conclude that they are in fact indistinguishable.
Therefore, W itself is P -a.s. locally α-Hölder-continuous. Since a locally α-
Hölder-continuous function is also locally β-Hölder-continuous whenever α > β,
we can conclude that W is P -a.s. locally α-Hölder-continuous for every α < 1

2 .

Exercise 2.3 (A new Brownian motion) Let (Ω, F , P ) be a probability space,
W = (Wt)t⩾0 a Brownian motion on (Ω, F , P ), Z a random variable independent
of W and s ∈ (0, ∞) a fixed time. We define the stochastic process V = (Vt)t⩾0
by

Vt := Wt1{t<s} +
(
Ws + Z(Wt − Ws)

)
1{t⩾s}.
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Find all possible distributions of Z such that V is a Brownian motion.

Solution 2.3 First, we have P [V0 = 0] = P [W0 = 0] = 1, so that (BM1) always
holds. Also, as limt↓s Vt = limt↓s(Ws + Z(Wt − Ws)) = Ws = Vs P -a.s., we can see
that (BM3) holds. Thus, V is a Brownian motion if and only if V satisfies (BM2′).
We claim that this happens if and only if Z takes values in {−1, 1} P -a.s.

To show this, fix 0 ⩽ t0 < · · · < tk ⩽ s < tk+1 < · · · < tn and note that the
random variables Vtj

− Vtj−1 , j = 1, . . . , n, are independent and with distribution
N (0, tj − tj−1) if and only if the characteristic function φ : Rn → C of the random
vector (Vt1 − Vt0 , . . . , Vtn − Vtn−1) is equal to

φ(λ1, . . . , λn) = exp
(

− 1
2

n∑
j=1

λ2
j(tj − tj−1)

)
. (2)

We can write

(Vt1 − V0, . . . , Vtn − Vtn−1) =
(
Wt1 − Wt0 , . . . , Wtk

− Wtk−1 ,

Ws + Z(Wtk+1 − Ws) − Wtk
,

Z(Wtk+2 − Wtk+1), . . . , Z(Wtn − Wtn−1)
)
.

So we compute

φ(λ1, . . . , λn) := E

[
exp

(
i

n∑
j=1

λj(Vtj
− Vtj−1)

)]

= E

 exp
(

i
k∑

j=1
λj(Wtj

− Wtj−1) + iλk+1(Ws − Wtk
)
)

× exp
iZ

(
λk+1(Wtk+1 − Ws) +

n∑
j=k+2

λj(Wtj
− Wtj−1)

).

From the independence of Brownian increments and the independence of W and Z,
one can see that the two exponentials in the above product are independent, and so
we have

φ(λ1, . . . , λn) = E

[
exp

(
i

k∑
j=1

λj(Wtj
− Wtj−1) + iλk+1(Ws − Wtk

)
)]

(3)

× E

 exp
iZ

(
λk+1(Wtk+1 − Ws) +

n∑
j=k+2

λj(Wtj
− Wtj−1)

). (4)

Now using the fact that Brownian motion has independent Gaussian increments, we
know (2) is equal to

exp
(

− 1
2

k∑
j=1

λ2
j(tj − tj−1) − 1

2λ2
k+1(s − tk)

)
.
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Also, we can write (3) as

E

E

[
exp

(
iZ
(

λk+1(Wtk+1 − Ws) +
n∑

j=k+2
λj(Wtj

− Wtj−1)
)) ∣∣∣∣∣ Z

]
= E

 exp
− 1

2Z2
(

λ2
k+1(tk+1 − s) +

n∑
j=k+2

λ2
j(tj − tj−1)

).

It follows that if Z2 = 1 P -a.s., then (1) holds. Conversely, suppose that (1) holds
for all n ∈ N, λ1, . . . , λn ∈ R and 0 ⩽ t0 < · · · < tk ⩽ s < tk+1 < · · · < tn. To show
that Z2 = 1 P -a.s., we use that the Laplace transform ρ 7→ E[e−ρZ2 ] (on [0, ∞)) of
Z2 is uniquely determined by its distribution. We start by choosing n = 1, t0 = 0
and t1 > s. Then the above calculations give that

φ(λ1) = exp
(

−1
2λ2

1s
)

E
[
exp

(
−1

2Z2λ2
1(t1 − s)

)]
,

while (1) gives
φ(λ1) = exp

(
−1

2λ2
1t1

)
.

It follows that

E
[
exp

(
−1

2Z2λ2
1(t1 − s)

)]
= exp

(
−1

2λ2
1(t1 − s)

)
.

Now set ρ := 1
2λ2

1(t1 − s). Since t1 > s, ρ will vary over all values of [0, ∞) as λ1
varies over R. We thus have that for all ρ ∈ [0, ∞),

E[exp(−ρZ2)] = exp(−ρ).

Hence, the Laplace transform of Z2 is the same as the Laplace transform of the
constant function 1, from which it follows that Z2 = 1 P -a.s. This completes the
proof.

Exercise 2.4 (Blumenthal’s 0-1 law)

(a) Let W be a Brownian motion on a probability space (Ω, F , P ) with natural
filtration (Ft)t⩾0, i.e. Ft = σ(Ws, 0 ⩽ s ⩽ t). Consider the σ-field

F0+ :=
⋂
t>0

Ft.

Establish Blumenthal’s 0-1 law: for A ∈ F0+, either P [A] = 0 or P [A] = 1.

(b) Show that

P

[
lim sup

t↓0

Wt√
t

= ∞
]

= 1.
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Hint: Start by showing that for each C > 0,

lim
t↓0

P

[
sup

0⩽s⩽t
(Ws − C

√
s) > 0

]
> 0

and then use part (a).

Solution 2.4

(a) We follow Le Gall, Theorem 2.13. Fix A ∈ F0+, 0 < t1 < · · · < tk and let
g : Rk → R be a bounded and continuous function. Since g is continuous and
Wε → 0 P -a.s. as ε ↓ 0, the dominated convergence theorem yields

E[1Ag(Wt1 , . . . , Wtk
)] = lim

ε↓0
E[1Ag(Wt1 − Wε, . . . , Wtk

− Wε)].

Now for 0 < ε < t1, the random variables Wt1 − Wε, . . . , Wtn − Wε are inde-
pendent of Fε, and thus also of A ∈ F0+ ⊆ Fε. So we can rewrite the above
as

E[1Ag(Wt1 , . . . , Wtk
)] = P [A] lim

ε↓0
E[g(Wt1 − Wε, . . . , Wtk

− Wε)]

= P [A]E[g(Wt1 , . . . , Wtk
)],

where in the last step we again use the dominated convergence theorem. It
follows that F0+ is independent of σ(Wt1 , . . . , Wtk

). As 0 < t1 < · · · < tk were
chosen arbitrarily and independence of σ-fields is equivalent to independence of
π-systems that generate those σ-fields, we can conclude that F0+ is independent
of σ(Wt : t > 0). But as W0 = 0, then of course σ(Wt : t > 0) = σ(Wt : t ⩾ 0).
Since F0+ ⊆ σ(Wt : t ⩾ 0), it follows that F0+ is independent of itself. This
means that for each A ∈ F0+,

P [A] = P [A ∩ A] = P [A]2,

and thus P [A] = 0 or P [A] = 1, as required.

(b) Fix C > 0. For every t > 0, since Wt ∼ N (0, t), we have

P [Wt > C
√

t] = 1 − Φ(C),

where Φ denotes the cdf of the standard normal distribution. In particular, we
have

lim
t↓0

P

[
sup

0⩽s⩽t
(Ws − C

√
s) > 0

]
⩾ lim

t↓0
P
[
Wt − C

√
t > 0

]
= 1 − Φ(C) > 0.

Note also that {
lim sup

t↓0

Wt√
t
⩾ C

}
=

∞⋂
n=1

 sup
0<t⩽ 1

n

Wt√
t
⩾ C

 ,
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which shows in particular that {lim supt↓0
Wt√

t
⩾ C} ∈ F0+ (as the sets

{sup0<t⩽ 1
n

Wt√
t
⩾ C} are decreasing in n ∈ N). We now write

P

[
lim sup

t↓0

Wt√
t
⩾ C

]
= P

 ∞⋂
n=1

 sup
0<t⩽ 1

n

Wt√
t
⩾ C




= lim
n→∞

P

 sup
0<t⩽ 1

n

Wt√
t
⩾ C


⩾ 1 − Φ(C)
> 0.

So by Blumenthal’s 0-1 law, it must be that

P

[
lim sup

t↓0

Wt√
t
⩾ C

]
= 1.

Since {
lim sup

t↓0

Wt√
t

= ∞
}

=
∞⋂

m=1

{
lim sup

t↓0

Wt√
t
⩾ m

}
,

the claim follows.
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