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Exercise 2.1 (Equivalent definitions of Brownian motion) Let X be a stochastic
process on a probability space (Q, F, P) with Xo = 0 P-a.s., and let FX = (F/X);>0
denote the (raw) filtration generated by X, i.e., F* = o (X,; s < t). Show that the
following two properties are equivalent:

(i) X has independent increments, i.e., for alln € Nand 0 < tg <t; < --- < t,, the
increments X;, — X, ,, 7= 1,...,n, are independent.

i—17

(ii) X has FX-independent increments, i.e., X; — X, is independent of FX whenever
t > s.

Remark: This shows the equivalence of the properties (BM2) and (BM2') of
Brownian motion.

Hint: For proving “(i) = (ii)”, you might use the monotone class theorem. When
choosing the set H, recall that a random variable Y is independent of a o-algebra
G if and only if Elg(Y)Z] = E[g(Y)]E[Z] for all bounded measurable functions
g : R — R and bounded G-measurable random variables Z.

Solution 2.1 First, assume that (ii) holds. We use induction on n to show (i)
holds. The base case n = 1 is trivial. Now fixn > 2, 0 <tg <t; < --- < t, and
Ay, ..., A, € B(R). By (ii), we know that X, — X, , is independent of F;* , and
therefore

P [ﬂ{Xti — X, € A}
i=1

n—1
=P [ﬂ {Xi, — Xi,_, € Ai}| P[Xy, — Xy, , € Al
i=1

By the induction hypothesis,

-1

P[X, — X,_, € 4],

3

n—1 7
P [ﬂ {Xti - Xti71 € AZ}

i=1 d =1

so that

P [ﬂ{Xti - X;. , € A} I PIX: — X:,, € Al

i
=1 =1

.

as required.
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Conversely, assume (i) holds and fix 0 < s < . Define the set M by
M = {Hhi(Xsi) :h; : R = R bdd measurable, 0 < s1<---<s,<S8, né€ N}.
i=1

Then M is a family of bounded real-valued functions on 2 which is closed under
multiplication. Moreover, we have o(M) = FX.

Now let H denote the set of all bounded and FX-measurable random variables Z
satisfying

Elg(X: — Xs)Z] = Elg(X: — X,)|E[Z], Vg:R — R bounded measurable.

Then H contains the constant function 1. By the dominated convergence theorem,
we can see that H is also closed under (monotone) bounded convergence. To apply
the monotone class theorem, it only remains to show H O M.

To this end, fix some Z = [[IL; hi(X,,) € M and define the measurable function
h:R™ = R by h(zy,...,2,) =1 hi(z;). Then we can write Z = h(X,,..., Xs,).

Remembering Xy = 0 P-a.s., there exists some linear transformation L : R" — R"
with

(Xsy, -y Xs,) = L(X,, — Xo, X, — Xy, -, X, — X, ) P-as.
So we can write Z = (ho L)(X;, — X0, Xs, — Xy .-, X5, — Xs,,). Since Xy — X
is independent of (X, — Xo, Xs, — X5, ..., X5, — X;,_,) and h o L is measurable,

also X; — X is independent of Z. It then follows immediately that for any bounded
measurable g : R — R,

E[g(Xt - XS)Z] = E[g(Xt - Xs)]E[Z]

We thus have Z € H, and as Z € M was arbitrary, we have shown that M C H. So
by the monotone class theorem, H contains every bounded FZX-measurable random
variable. From the hint, we conclude that X; — X, is independent of FX. This
completes the proof.

Exercise 2.2 (Hoélder continuity of Brownian paths) For a fixed o > 0, a function
f:D CR — Ris called locally a-Hdélder-continuous at a point x € D if there
exist 6 > 0 and C' > 0 such that |f(z) — f(y)] < Clz — y|* for all y € D with
|l —y| < 9. If f is locally a-Hoélder-continuous at every x € D, we say that f is
locally a-Hélder-continuous.

(a) Let Z ~ N(0,1). Show that P[|Z] < €] < € for any € > 0.

(b) Let W be a Brownian motion. Prove that for any o > £, P-almost all paths of
W are nowhere locally a-Holder-continuous on [0, 1].

Hint: Take any M € N satisfying M (a — %) > 1 and show that the set

{W (w) is locally a-Hélder at some s € [0, 1]} is contained in the set

.....
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(c) The Kolmogorov-Centsov theorem states that a stochastic process X on [0, T]
satisfying
ElIX,— X< C|t—s|""P  ste(0,T],

for some fixed ~, 5, C' > 0 has a version which is locally a-Hélder-continuous
for each o < /. Use this result to deduce that Brownian motion is P-a.s.
locally a-Holder-continuous for every o < 1/2.

Remark: One can also show that the Brownian paths are not locally 1/2-
Holder-continuous. The exact modulus of continuity was found by P. Lévy.

Solution 2.2
(a) We have

¢ 1 2 | 2
Pl|Z| <&l = Pl-e < Z < :/ ~2/2 4z < de =
[1Z] < €] [—¢ €] 3 e x T x \/%5

as required.

(b) Fix a > % and let M € N satisfy M (a — %) > 1. Following the hint, suppose
that w € 2 is such that W (w) is locally a-Hélder-continuous at some s € [0, 1].
Then there exist 6 > 0 and C' € N such that |W;(w) — W(w)| < C|t —s|* for all
|t — s| < d. Note that there is some m € N large enough so that for all n > m,
taking k € {0,...,n — M} minimal with £ > s — § gives £t € (s — 4,5+ 0)
for all j =0,..., M. It follows that the set

{W (w) is locally a-Holder at some s € [0, 1]}

is contained in the set

“UUN U N{wwe-wesei<e k),

(e}
CeNmeN n>m k=0,...n—M j=1 n

since for each j = 1,..., M, we have |*H — EHI=1) —

that B is a nullset.

%. It thus suffices to show

Since the increments Wi, — W1, j = 1,..., M, are i.i.d. ~ N(0,2), we
can write, for Z ~ N(0, 1),

a 1 C M
ﬂ{WW(w) — Wi ()] < Cna} —pP [|Z\ < a—1/2}
Part (a) then gives
a 1
P m {|Wk+](w) — Wi (w)] < Cna} < OMp~Mla—3) (1)
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Now if we set

N U W) - W <o},

(e}
n>m k=0,...n—M j=1 n

then for each n > m, we have

1
D, C U n{ww Wkﬂ-_l(wngo}.

a
..... n—M j=1 n

So by using (4) and remembering that M (o — 3) > 1, we get

P[D,,] < limsup P

U O {IWes(e) - W ) < 0.2

n—00 k=0, M =1 —
< limsup(n — M + 1)CM M)

n—oo
=0.

As

B=|J U Dn

CeNmeN

is a countable union of nullsets, we conclude that P[B] = 0, as claimed.

Fix 0 < s < t. We have W, — W, ~ N (0,t — s), and for each n € N,
E[|W; — W,|*"] = |t — s|"E[Z*"] := Co,|t — s,

where Z ~ N(0,1) and Cy, := E[Z*"] < co. Setting 7, :=2n and 3, :=n —1,
we can write
E[|W, = W] = Cault — s

Now fix « < =. Since 5" T %, there exists NV € N such that o < % We can

then apply the Kolmogorov—(jentsov theorem for this N to conclude that W
has a locally a-Hoélder-continuous version.

Now since both W and this locally a-Hoélder-continuous version are continuous,
we can apply Exercise 1.2(a) to conclude that they are in fact indistinguishable.
Therefore, W itself is P-a.s. locally a-Holder-continuous. Since a locally a-
Holder-continuous function is also locally S-Holder-continuous whenever o > (3,
we can conclude that W is P-a.s. locally a-Holder-continuous for every a < %

Exercise 2.3 (A new Brownian motion) Let (2, F, P) be a probability space,

W:

(Wi)i=0 a Brownian motion on (2, F, P), Z a random variable independent

of W and s € (0,00) a fixed time. We define the stochastic process V = (V;)i=0

by

Vii=Wilpeg + (Ws + Z(W; — Ws)) Lizgy-
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Find all possible distributions of Z such that V' is a Brownian motion.

Solution 2.3 First, we have P[Vy = 0] = P[W, = 0] = 1, so that (BM1) always
holds. Also, as limy, V; = limy (W, + Z(W; — Wy)) = W, = V; P-a.s., we can see
that (BM3) holds. Thus, V' is a Brownian motion if and only if V' satisfies (BM2').
We claim that this happens if and only if Z takes values in {—1,1} P-a.s.

To show this, fix 0 < tg < -+ <t < s < tpy1 < --- < t, and note that the
random variables Vi, —V;._,, 7 = 1,...,n, are independent and with distribution
N(0,t; — t;—1) if and only if the characteristic function ¢ : R® — C of the random
vector (Vi, — Vi, ..., Vi, — V4, ) is equal to

oM. M) = cxp ( -1 jilﬁ(tj - tj_1>). @)
We can write
(Vi = Voo Vi = Vi) = (W, = Wiy, W, = W,
We+ Z(Wy,,, = Ws) = W,
ZWiro = Wi ) Z(Wi, = Wy, ).
So we compute

ey Bl (0%, 1,

j=1

k
= E|exp (Z Z AWy, = Wi, ) + idea (W — Wtk))

j=k+2

X exp (z‘Z (AM(WW — W)+ an A (W, — Wtj1)>>}

From the independence of Brownian increments and the independence of W and Z,
one can see that the two exponentials in the above product are independent, and so
we have

WA, ) = F [exp (z Z N(We, = Wi, ) + idepr (W — Wtk)>] (3)

x F

€Xp (ZZ <>\k+1(Wtk+1 - WS) + zn: Aj(Wtj o Wtjl)>):|' (4)

j=k+2

Now using the fact that Brownian motion has independent Gaussian increments, we
know (2) is equal to

1 & 1
exp ( — 5 Z )\?(tj — tj—l) — 5)\i+1(5 — tk)>
j=1
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Also, we can write (3) as

E

E[exp <¢Z(Ak+1(wtm W)+ Y AW - Wtj_l))> Z]

j=k+2

=F

exp( ZZ<A§H teer — ) + Z A2(t; )))

j=k+2

It follows that if Z? =1 P-a.s., then (1) holds. Conversely, suppose that (1) holds
foralln e Ny A\j, ..., e Rand 0 <tg < -+ <t < s <ty <--- <t,. Toshow
that Z2 = 1 P-a.s., we use that the Laplace transform p — E[e~*?"] (on [0, 00)) of
Z? is uniquely determined by its distribution. We start by choosing n =1, t; = 0
and t; > s. Then the above calculations give that

1 1
©(A\) = exp (—2)\%5*) E {exp (—222)\3(151 - s))} :
while (1) gives

1
p(A1) = exp (_2)‘%{;1) :

It follows that
L 2o Ly
E {exp <—2Z At — 8))} = exp (—2)\1(751 — s)) .

Now set p := $X%(t; — s). Since ¢; > s, p will vary over all values of [0,00) as A
varies over R. We thus have that for all p € [0, 00),

Elexp(—pZ?)] = exp(—p).

Hence, the Laplace transform of Z? is the same as the Laplace transform of the
constant function 1, from which it follows that Z? = 1 P-a.s. This completes the
proof.

Exercise 2.4 (Blumenthal’s 0-1 law)

(a) Let W be a Brownian motion on a probability space (€2, F, P) with natural
filtration (F})is0, i.e. Fy = 0(W5,0 < s < t). Consider the o-field

.F(H.Zzﬂft.

£>0
Establish Blumenthal’s 0-1 law: for A € Fo,, either P[A] =0 or P[A] = 1.
(b) Show that

P [lim sup Wi = 1.

wo VE “]
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Hint: Start by showing that for each C' > 0,

lgglp sup (Wy — Cy/s) > 0| >0

0<s<t

and then use part (a).

Solution 2.4

(a) We follow Le Gall, Theorem 2.13. Fix A € Fyy, 0 < t; < --- < t; and let
g : R¥ = R be a bounded and continuous function. Since g is continuous and
W. — 0 P-a.s. as € | 0, the dominated convergence theorem yields

E[].Ag(th, ceay Wtk)] = 1;\{51 E[].Ag(th — WE: ey Wtk — Ws)]
Now for 0 < € < t;, the random variables W;, — W, ..., W, — W_ are inde-
pendent of F., and thus also of A € Fy C F.. So we can rewrite the above
as
E1ag(Wy, ..., W) = P[A] 13&1 ElgWy, —We, ..., Wy, — W,)]

= P[AIE[gWy,, ..., W),

where in the last step we again use the dominated convergence theorem. It
follows that Fo; is independent of (Wi, ..., Wi, ). As 0 <ty < --- < 5 were
chosen arbitrarily and independence of o-fields is equivalent to independence of
m-systems that generate those o-fields, we can conclude that Fy, is independent
of o(W; :t > 0). But as Wy = 0, then of course o(W; : t > 0) =a(W; : t > 0).
Since Foy C o(W,; : t > 0), it follows that Fy, is independent of itself. This
means that for each A € Fy,,

P[A] = P[AN A] = P[A]?,
and thus P[A] =0 or P[A] = 1, as required.
(b) Fix C > 0. For every t > 0, since W; ~ N(0,t), we have
P[W, > CVt] =1 - d(0),

where ® denotes the cdf of the standard normal distribution. In particular, we
have

>1}¢%1P[Wt—o\/i>o]=1—c1>(0)>o.

t}0 0<s<t

lim P lsup (W, —Cy/s) >0

Note also that

pay 4%
{limsup W > C’} = ﬂ sup — > C'y,
Ho - Vi n=1 |0<t<t t
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which shows in particular that {lim suptw% > C} € For (as the sets

su 1 ™ > O are decreasing in n € N). We now write
Po<t<t g

4% = %%
Pllimsupt>C’ =P ﬂ sup —~ > C
Ho - Vit n=1 |0<t<i V1
1%
= lim P| sup —= > C
n— 00 O<t<%
>1-9(0)
> 0.
So by Blumenthal’s 0-1 law, it must be that
=1.

P [lim sup % > C
1o V1t

Since

. Wi ~ |+ Wi
limsup — =00 = limsup — > mp,
{imgen U = oo = (] {ime 17 > m}

the claim follows.
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