Brownian Motion and Stochastic Calculus Exercise Sheet 3

Submit by 12:00 on Wednesday, March 12 via the course homepage.

Exercise 3.1 (Ornstein–Uhlenbeck process) Let $W = (W_t)_{t\geq 0}$ be a Brownian motion and consider the \mathbb{R} -indexed stochastic process $X = (X_t)_{t\in\mathbb{R}}$ defined by

$$X_t := e^{-t} W_{e^{2t}}.$$

The process X is called an *Ornstein–Uhlenbeck process*.

- (a) For fixed $t \in \mathbb{R}$, what is the distribution of X_t ?
- (b) Show that the process $(X_t)_{t\in\mathbb{R}}$ is time-reversible, meaning that

$$(X_t)_{t \ge 0} \stackrel{(\mathrm{d})}{=} (X_{-t})_{t \ge 0}$$

Note that the equality above means that the distribution of the left-hand side is the same as the distribution of the right-hand side, as stochastic processes. This says more than simply having $X_t \stackrel{\text{(d)}}{=} X_{-t}$ for each $t \ge 0$.

Exercise 3.2 (Non-adapted process) Let $W = (W_t)_{0 \le t \le 1}$ be a Brownian motion on [0, 1] with respect to its natural filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le 1}$. Consider the stochastic process $X = (X_t)_{0 \le t \le 1}$ given by

$$X_t := x(1-t) + yt + (W_t - tW_1),$$

where $x, y \in \mathbb{R}$ are fixed constants.

- (a) Show that X is a continuous Gaussian process with $X_0 = x$ and $X_1 = y$. The process X is also called the *Brownian bridge* from x to y over [0, 1].
- (b) Calculate the mean and covariance function of $(X_t)_{0 \le t \le 1}$.
- (c) Show that X is not \mathbb{F} -adapted.
- (d) Let $\mathbb{F}^X = (\mathcal{F}^X_t)_{0 \leq t \leq 1}$ denote the natural filtration of X. Is W also a Brownian motion on [0, 1] with respect to \mathbb{F}^X ?

Exercise 3.3 (Martingales) Let W be a Brownian motion with respect to its natural filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$.

Updated: March 5, 2025

1/2

(a) Show that the process $M = (M_t)_{t \ge 0}$ given by

$$M_t = tW_t - \int_0^t W_u \,\mathrm{d}u,$$

is a martingale, under the assumption that the filtration \mathbb{F} is complete.

(b) Show that the process $N = (N_t)_{t \ge 0}$ given by

$$N_t = W_t^3 - 3tW_t,$$

is a martingale.

Exercise 3.4 (σ -field of the past before τ) Given a measurable space (Ω, \mathcal{F}) with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$, we set $\mathcal{F}_{\infty} := \sigma(\bigcup_{t \ge 0} \mathcal{F}_t)$ and define for any \mathbb{F} -stopping time τ the σ -field

$$\mathcal{F}_{\tau} := \Big\{ A \in \mathcal{F}_{\infty} : A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \Big\}.$$

Let S, T be \mathbb{F} -stopping times. Show the following:

- (a) If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- (b) $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T.$
- (c) For any $A \in \mathcal{F}_S$, both $A \cap \{S < T\}$ and $A \cap \{S \leq T\}$ are in $\mathcal{F}_{S \wedge T}$. Note that this shows in particular that $\{S < T\}, \{S \leq T\} \in \mathcal{F}_{S \wedge T}$.
- (d) For any stopping time τ ,

 $\mathcal{F}_{\tau} = \sigma(X_{\tau} : X \text{ is an optional process}).$