Brownian Motion and Stochastic Calculus Exercise Sheet 4

Submit by 12:00 on Wednesday, March 19 via the course homepage.

Exercise 4.1 (Commutativity of conditioning on stopping time σ -fields) Consider two stopping times σ, τ on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$. The aim of this exercise is to show that for all integrable random variables Z,

$$E\left[E[Z \mid \mathcal{F}_{\sigma}] \mid \mathcal{F}_{\tau}\right] = E\left[E[Z \mid \mathcal{F}_{\tau}] \mid \mathcal{F}_{\sigma}\right] = E[Z \mid \mathcal{F}_{\sigma \wedge \tau}], \qquad (*)$$

i.e., the operators $E[\cdot |\mathcal{F}_{\sigma}]$ and $E[\cdot |\mathcal{F}_{\tau}]$ on $L^{1}(\Omega)$ commute and their composition is $E[\cdot |\mathcal{F}_{\sigma \wedge \tau}]$.

Remark: For arbitrary sub- σ -algebras $\mathcal{G}, \mathcal{G}' \subseteq \mathcal{F}$, the conditional expectations $E[E[\cdot |\mathcal{G}]|\mathcal{G}'], E[E[\cdot |\mathcal{G}']|\mathcal{G}]$ and $E[\cdot |\mathcal{G} \cap \mathcal{G}']$ do not coincide in general.

- (a) Show that if Y is an \mathcal{F}_{σ} -measurable random variable, then $Y\mathbf{1}_{\{\sigma \leq \tau\}}$ and $Y\mathbf{1}_{\{\sigma < \tau\}}$ are $\mathcal{F}_{\sigma \wedge \tau}$ -measurable.
- (b) Show that if Y is an \mathcal{F}_{σ} -measurable and integrable random variable, then $E[Y | \mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma \wedge \tau}$ -measurable.
- (c) Deduce (*).

Exercise 4.2 (Stopped martingales) Let $M = (M_t)_{t \ge 0}$ be a martingale with right-continuous sample paths and let τ be a stopping time with respect to the same filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. Define the stopped process $M^{\tau} = (M_t^{\tau})_{t \ge 0}$ by

$$M_t^\tau := M_{t \wedge \tau}.$$

(a) Suppose additionally that M is uniformly integrable. Show that for each $t \ge 0$,

$$M_t^\tau = E[M_\tau \,|\, \mathcal{F}_t]$$

Deduce that M^{τ} is a uniformly integrable martingale.

(b) Without assuming that M is uniformly integrable, show that the stopped process M^{τ} is still a martingale.

Exercise 4.3 (Ruin problem for Brownian motion) Let $W = (W_t)_{t \ge 0}$ be a Brownian motion. For each $x \in \mathbb{R}$, define the stopping time τ_x by

$$\tau_x := \inf\{t \ge 0 : W_t = x\}.$$

Updated: March 11, 2025

1/2

Fix a < 0 < b and set $\tau := \tau_a \wedge \tau_b$.

(a) Show that for each $\lambda > 0$,

$$E[e^{-\lambda\tau}] = \frac{\cosh(\frac{b+a}{2}\sqrt{2\lambda})}{\cosh(\frac{b-a}{2}\sqrt{2\lambda})}.$$

Hint: For a suitable choice of $\alpha \in \mathbb{R}$, consider the process $M = (M_t)_{t \ge 0}$ given by

$$M_t := e^{\sqrt{2\lambda}(W_t - \alpha) - \lambda t} + e^{-\sqrt{2\lambda}(W_t - \alpha) - \lambda t}.$$

You may want to think about why M is a martingale.

(b) Show similarly that for every $\lambda > 0$,

$$E[e^{-\lambda\tau}\mathbf{1}_{\{\tau=\tau_a\}}] = \frac{\sinh(b\sqrt{2\lambda})}{\sinh((b-a)\sqrt{2\lambda})}.$$

(c) Find the value of P[τ_a < τ_b].
Hint: You may use the identity

$$\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y).$$