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Exercise 4.1 (Commutativity of conditioning on stopping time σ-fields) Consider
two stopping times σ, τ on a filtered probability space (Ω, F , (Ft)t⩾0, P ). The aim of
this exercise is to show that for all integrable random variables Z,

E
[
E[Z | Fσ]

∣∣∣Fτ

]
= E

[
E[Z | Fτ ]

∣∣∣Fσ

]
= E[Z | Fσ∧τ ], (∗)

i.e., the operators E[ · |Fσ] and E[ · |Fτ ] on L1(Ω) commute and their composition
is E[ · |Fσ∧τ ].

Remark: For arbitrary sub-σ-algebras G, G ′ ⊆ F , the conditional expectations
E[E[ · |G]|G ′], E[E[ · |G ′]|G] and E[ · |G ∩ G ′] do not coincide in general.

(a) Show that if Y is an Fσ-measurable random variable, then Y 1{σ⩽τ} and Y 1{σ<τ}
are Fσ∧τ -measurable.

(b) Show that if Y is an Fσ-measurable and integrable random variable, then
E[Y | Fτ ] is Fσ∧τ -measurable.

(c) Deduce (∗).

Solution 4.1

(a) Since {σ ⩽ τ}, {σ < τ} ∈ Fσ by Exercise 3.4, we have that Y 1{σ⩽τ}, Y 1{σ<τ}
are both Fσ-measurable. To show Fσ∧τ -measurability, we only argue for
Y 1{σ⩽τ}, as the argument for Y 1{σ<τ} is analogous. First, consider the case
that Y is a simple function, say Y = ∑n

i=1 λi1Ai
for some A1, . . . , An ∈ Fσ and

λ1, . . . , λn ∈ R. Then we have Y 1{σ⩽τ} = ∑n
i=1 λi1Ai∩{σ⩽τ}. By Exercise 3.4,

Ai ∩ {σ ⩽ τ} ∈ Fσ∧τ for each 1 ⩽ i ⩽ n, and thus Y is Fσ∧τ -measurable.

For general Y , we can construct simple random variables Y n of the above form
such that Y n(ω) → Y (ω) for all ω ∈ Ω (under the assumption of completeness
of F0), and thus Y n1{σ⩽τ} → Y 1{σ⩽τ} pointwise, implying that Y 1{σ⩽τ} is
Fσ∧τ -measurable, as required.

(b) We first write

E[Y | Fτ ] = E[Y 1{σ>τ} | Fτ ] + E[Y 1{σ⩽τ} | Fτ ] = E[Y | Fτ ]1{σ>τ} + Y 1{σ⩽τ},
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where in the last equality we use part (a) together with the fact that Fσ∧τ ⊆ Fτ .
Part (a) implies that E[Y | Fτ ]1{σ>τ} = E[Y | Fτ ]1{τ<σ} is Fσ∧τ -measurable.
As Y is Fσ-measurable, part (a) also gives that Y 1σ⩽τ is Fσ∧τ -measurable, and
thus E[Y | Fτ ] is also Fσ∧τ -measurable.

(c) Fix Z ∈ L1(Ω). Then E[Z | Fσ] is Fσ-measurable and integrable; so by part
(b), E[E[Z | Fσ] | Fτ ] is Fσ∧τ -measurable. Since Fσ∧τ ⊆ Fτ and Fσ∧τ ⊆ Fσ, we
thus have

E
[
E[Z | Fσ]

∣∣∣Fτ

]
= E

[
E
[
E[Z | Fσ]

∣∣∣Fτ

] ∣∣∣∣Fσ∧τ

]
= E

[
E[Z | Fσ]

∣∣∣Fσ∧τ

]
= E[Z | Fσ∧τ ].

By symmetry, we therefore also have

E
[
E[Z | Fτ ]

∣∣∣Fσ

]
= E[Z | Fσ∧τ ],

which completes the proof.

Exercise 4.2 (Stopped martingales) Let M = (Mt)t⩾0 be a martingale with
right-continuous sample paths and let τ be a stopping time with respect to the same
filtration F = (Ft)t⩾0. Define the stopped process M τ = (M τ

t )t⩾0 by

M τ
t := Mt∧τ .

(a) Suppose additionally that M is uniformly integrable. Show that for each t ⩾ 0,

M τ
t = E[Mτ | Ft].

Deduce that M τ is a uniformly integrable martingale.

(b) Without assuming that M is uniformly integrable, show that the stopped
process M τ is still a martingale.

Solution 4.2

(a) Fix t ⩾ 0. We have that t ∧ τ is a stopping time with t ∧ τ ⩽ τ . Since M is a
uniformly integrable martingale, we can apply the stopping theorem (Theorem
2.3.8) to get

E[Mτ | Ft∧τ ] = Mt∧τ . (1)
In particular, we see that Mt∧τ is integrable and Ft∧τ -measurable. Since
Ft∧τ ⊆ Ft (by Exercise 3.4(a)), we have that Mt∧τ is also Ft-measurable. Thus
in order to prove Mt∧τ = E[Mτ | Ft], it suffices to show that for each A ∈ Ft,

E[1AMτ ] = E[1AMt∧τ ],
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by the definition of the conditional expectation. To this end, fix A ∈ Ft and
write

E[1A∩{τ⩽t}Mτ ] = E[1A∩{τ⩽t}Mt∧τ ]. (2)
Notice also that by taking S ≡ t in Exercise 3.4(c) gives A ∩ {τ > t} ∈ Ft∧τ .
This together with (1) implies that

E[1A∩{τ>t}Mτ ] = E[1A∩{τ>t}Mt∧τ ].

Summing with (2) then yields the required equality. We have thus shown that
M τ

t = E[Mτ | Ft]. In particular, M τ is a martingale closed on the right and
thus uniformly integrable.

(b) Fix n ∈ N and consider the process (Mt∧n)t⩾0. Notice that Mt∧n = E[Mn | Ft]
for all t ⩾ 0, so that (Mt∧n)t⩾0 is a closed and hence uniformly integrable
martingale. We can then apply part (a) to deduce that the stopped process
(Mt∧n∧τ )t⩾0 is a uniformly integrable martingale. In particular, it follows that
M τ is a martingale on [0, n], as (M τ

t )0⩽t⩽n ≡ (Mt∧n∧τ )0⩽t⩽n. Now letting
n → ∞ gives that M τ is a martingale on the whole of [0, ∞), completing the
proof.

Alternative solution: Fix s ⩽ t. Since t ∧ τ ⩽ t are bounded stopping times,
the stopping theorem gives Mt∧τ = E[Mt | Ft∧τ ]. We can then apply Exercise
4.1(c) to get

E[Mt∧τ | Fs] = E
[
E[Mt | Ft∧τ ]

∣∣∣Fs

]
= E[Mt | Fs∧τ ].

Now noting that s∧τ ⩽ t are bounded stopping times, we can apply the stopping
theorem again to get E[Mt | Fs∧τ ] = Ms∧τ . This completes the proof.

Exercise 4.3 (Ruin problem for Brownian motion) Let W = (Wt)t⩾0 be a
Brownian motion. For each x ∈ R, define the stopping time τx by

τx := inf{t ⩾ 0 : Wt = x}.

Fix a < 0 < b and set τ := τa ∧ τb.

(a) Show that for each λ > 0,

E[e−λτ ] =
cosh( b+a

2

√
2λ)

cosh( b−a
2

√
2λ)

.

Hint: For a suitable choice of α ∈ R, consider the process M = (Mt)t⩾0 given
by

Mt := e
√

2λ(Wt−α)−λt + e−
√

2λ(Wt−α)−λt.

You may want to think about why M is a martingale.
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(b) Show similarly that for every λ > 0,

E[e−λτ 1{τ=τa}] = sinh(b
√

2λ)
sinh((b − a)

√
2λ)

.

(c) Find the value of P [τa < τb].

Hint: You may use the identity

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y).

Solution 4.3

(a) By Proposition 2.3.4, the processes U = (Ut)t⩾0 and V = (Vt)t⩾0 given by

Ut := e
√

2λWt−λt and Vt := e−
√

2λWt−λt

are martingales. Also, by Exercise 4.2(b), the stopped processes U τ and V τ

are martingales. Moreover, by the definition of τ , we have for all t ⩾ 0 that

0 < U τ
t ⩽ e

√
2λb and 0 < V τ

t ⩽ e−
√

2λa.

It follows that U τ and V τ are in fact uniformly integrable martingales.

Now choose α = b+a
2 and consider the corresponding process M as in the hint.

We can write
Mt = e−

√
2λαUt + e

√
2λαVt,

In particular, M τ is a linear combination of the uniformly integrable martingales
U τ and V τ and thus is also a uniformly integrable martingale. We can thus
apply the stopping theorem with stopping times 0 ⩽ τ to get

E[Mτ ] = E[M0] = 2 cosh
(√

2λ
b + a

2

)
.

On the other hand, since τa can never equal τb, we have

E[Mτ ] = E[Mτ 1{τa<τb}] + E[Mτ 1{τa>τb}]
= e−

√
2λ b−a

2 E[e−λτ 1{τa<τb}] + e
√

2λ b−a
2 E[e−λτ 1{τa<τb}]

+ e
√

2λ b−a
2 E[e−λτ 1{τa>τb}] + e−

√
2λ b−a

2 E[e−λτ 1{τa>τb}]
= (e

√
2λ b−a

2 + e−
√

2λ b−a
2 )E[e−λτ ]

= 2 cosh
(√

2λ
b − a

2

)
E[e−λτ ].

It follows that
E[e−λτ ] =

cosh( b+a
2

√
2λ)

cosh( b−a
2

√
2λ)

,

as required.
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(b) Similarly to part (a), we consider the martingale N = (Nt)t⩾0 given by

Nt := e
√

2λ(Wt−α)−λt − e−
√

2λ(Wt−α)−λt,

with α = b+a
2 . Arguing analogously as in part (a), we arrive at

E[Nτ ] = E[N0] = −2 sinh
(√

2λ
b + a

2

)
.

On the other hand, we have

E[Nτ ] = e−
√

2λ b−a
2 E[e−λτ 1{τa<τb}] − e

√
2λ b−a

2 E[e−λτ 1{τa<τb}]
+ e

√
2λ b−a

2 E[e−λτ 1{τa>τb}] − e−
√

2λ b−a
2 E[e−λτ 1{τa>τb}]

= −2 sinh
(√

2λ
b − a

2

)
E[e−λτ 1{τa<τb}]

+ 2 sinh
(√

2λ
b − a

2

)
E[e−λτ 1{τa>τb}],

so that

−2 sinh
(√

2λ
b + a

2

)
= −2 sinh

(√
2λ

b − a

2

)
E[e−λτ 1{τa<τb}]

+ 2 sinh
(√

2λ
b − a

2

)
E[e−λτ 1{τa>τb}]. (3)

From part (a), we have

2 cosh
(√

2λ
b + a

2

)
= E[Mτ ] = 2 cosh

(√
2λ

b − a

2

)
E[e−λτ ]

= 2 cosh
(√

2λ
b − a

2

)
E[e−λτ 1{τa<τb}]

+ 2 cosh
(√

2λ
b − a

2

)
E[e−λτ 1{τa>τb}]. (4)

We now multiply (3) by cosh(
√

2λ b−a
2 ) and (4) by sinh(

√
2λ b−a

2 ) and subtract
to get

cosh
(√

2λ
b + a

2

)
sinh

(√
2λ

b − a

2

)
+ sinh

(√
2λ

b + a

2

)
cosh

(√
2λ

b − a

2

)

= cosh
(√

2λ
b − a

2

)
sinh

(√
2λ

b − a

2

)
E[e−λτ 1{τa<τb}]

+ sinh
(√

2λ
b − a

2

)
cosh

(√
2λ

b − a

2

)
E[e−λτ 1{τa<τb}].
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Using the identity sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y) twice, we
rewrite the above as

sinh(b
√

2λ) = sinh
(
(b − a)

√
2λ
)
E[e−λτ 1{τa<τb}].

Rearranging gives

E[e−λτ 1{τ=τa}] = E[e−λτ 1{τa<τb}] = sinh(b
√

2λ)
sinh((b − a)

√
2λ)

,

as required.

(c) We compute, using part (b) and the dominated convergence theorem,

P [τa < τb] = E[1{τa<τb}]
= lim

λ↓0
E[e−λτ 1{τa<τb}]

= lim
λ↓0

sinh(b
√

2λ)
sinh((b − a)

√
2λ)

= lim
λ↓0

sinh(bλ)
sinh((b − a)λ)

= b

b − a
lim
λ↓0

cosh(bλ)
cosh((b − a)λ)

= b

b − a
.
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