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Exercise 4.1 (Commutativity of conditioning on stopping time o-fields) — Consider
two stopping times o, 7 on a filtered probability space (2, F, (F;)i=0, P). The aim of
this exercise is to show that for all integrable random variables 7,

E[EZ| F,)

F.| = E|EZ| F]

‘FO':| :E[Z|‘FO'/\’T]7 (*)

i.e., the operators E[ - | F,] and E| - |F,] on L*(©2) commute and their composition
is E[ . ’fa/\‘r]-

Remark: For arbitrary sub-o-algebras G,G' C F, the conditional expectations

E[E[-|G]|G'], E[E]-|G']|G] and E] - |G NG'] do not coincide in general.

(a) Show that if Y is an F,-measurable random variable, then Y1,y and Y1,o7)
are F, --measurable.

(b) Show that if Y is an F,-measurable and integrable random variable, then
E[Y | F.] is F,r,-measurable.

(c) Deduce (x).

Solution 4.1

(a) Since {oc < 7}, {0 < 7} € F, by Exercise 3.4, we have that Y1,<;y, Y1o<r)
are both F,-measurable. To show F,,-measurability, we only argue for
Y1{,<s}, as the argument for Y1,y is analogous. First, consider the case
that Y is a simple function, say ¥ = > ; \;14, for some A;,..., A, € F, and
Aty ..o, Ap € R Then we have Y1,<y = 370 Milg,n{o<r}. By Exercise 3.4,
A;N{o <7} € Fyar for each 1 <i < n, and thus YV is F,,,-measurable.

For general Y, we can construct simple random variables Y of the above form
such that Y"(w) — Y (w) for all w € Q (under the assumption of completeness
of Fy), and thus Y"1(,<ry — Y1,y pointwise, implying that Y1j,<y is
F r—measurable, as required.

(b) We first write

EY|F| = EYlion | F| + EY Loy | Fr| = EY | Filioom + Y1io<ry,
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where in the last equality we use part (a) together with the fact that F,,, C F;.
Part (a) implies that E[Y | F:]1{osry = EY | Fr]l{r<o) is Fopr-measurable.
As Y is F,-measurable, part (a) also gives that Y'1,<, is F,,-measurable, and
thus E[Y | F,] is also F,,,-measurable.

(c) Fix Z € LY(Q)). Then E[Z|F,] is F,-measurable and integrable; so by part
(b), E[E[Z | F,]| F.] is F,anr-measurable. Since F,, C F, and F,p, C F,, we
thus have

E[E[Z|F,)|F] = E{E[E[Z | Fol | ]

‘FO'/\T:|
= E[E[Z| F,]| Fone]
= E[Z ‘ Fcr/\f]'

By symmetry, we therefore also have

E|E[Z| F/]

er} = E[Z"FUATL

which completes the proof.

Exercise 4.2 (Stopped martingales) Let M = (M;);>o be a martingale with
right-continuous sample paths and let 7 be a stopping time with respect to the same
filtration F = (F})i=0. Define the stopped process M™ = (M] )10 by

M = M.
(a) Suppose additionally that M is uniformly integrable. Show that for each ¢ > 0,
M] = E[M, | F].
Deduce that M7 is a uniformly integrable martingale.

(b) Without assuming that M is uniformly integrable, show that the stopped
process M7 is still a martingale.

Solution 4.2

(a) Fix t > 0. We have that t A 7 is a stopping time with ¢ A 7 < 7. Since M is a
uniformly integrable martingale, we can apply the stopping theorem (Theorem
2.3.8) to get

E[MT | ‘E/\T] = Minr. (1)

In particular, we see that M;,, is integrable and JF;,,-measurable. Since
Firr € F; (by Exercise 3.4(a)), we have that M, is also F;-measurable. Thus
in order to prove M, = E[M, | F], it suffices to show that for each A € F;,

E[1.M,] = E[14Mn],
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by the definition of the conditional expectation. To this end, fix A € F; and
write

E[lAﬂ{Tét} M;] = E[lAm{rgt} Mins). (2)

Notice also that by taking S =t in Exercise 3.4(c) gives AN {1 >t} € Fir,.
This together with (1) implies that

Elan(r>iyM:] = E[1angrsn Mins].

Summing with (2) then yields the required equality. We have thus shown that
M] = E[M. | F]. In particular, M7 is a martingale closed on the right and
thus uniformly integrable.

Fix n € N and consider the process (M, )io. Notice that M, = E[M,, | Fi]
for all ¢ > 0, so that (Man)eso is a closed and hence uniformly integrable
martingale. We can then apply part (a) to deduce that the stopped process
(Mipnar)i=0 is a uniformly integrable martingale. In particular, it follows that
MT™ is a martingale on [0,n], as (M )o<i<n = (Mianar)o<i<n- Now letting
n — oo gives that M7 is a martingale on the whole of [0, o0), completing the
proof.

Alternative solution: Fix s <t. Sincet N7 <t are bounded stopping times,
the stopping theorem gives My, = E[M; | Fipr]. We can then apply Exercise

4.1(c) to get

E[Myn, | FJ) = E[E[M, | Fip,]

F.] = B[M,| Fun).

Now noting that sANT < t are bounded stopping times, we can apply the stopping
theorem again to get E[M,; | Fspr| = Mgpr. This completes the proof.

Exercise 4.3 (Ruin problem for Brownian motion) Let W = (W;);=0 be a
Brownian motion. For each x € R, define the stopping time 7, by

T c=1inf{t > 0: W, = x}.

Fix a <0< bandset 7:=7, ATp.

(a)

Show that for each A > 0,

cosh(242+/2))

Hint: For a suitable choice of o € R, consider the process M = (My)i=¢ given

by
M, = o VAW —a) At + o V2A(Wi—a)=Xt

You may want to think about why M is a martingale.
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(b) Show similarly that for every A > 0,

sinh(bv/2))

Ble ] = sinh((b — a)v/2)\)

(¢) Find the value of P[r, < 7).
Hint: You may use the identity
sinh(z 4 y) = sinh(x) cosh(y) + cosh(x) sinh(y).

Solution 4.3
(a) By Proposition 2.3.4, the processes U = (U;)i>o and V = (V})0 given by

Ut — e\/?)\Wt—)\t ‘/; — 6—\/2)\Wt—)\t

and

are martingales. Also, by Exercise 4.2(b), the stopped processes U™ and V7"
are martingales. Moreover, by the definition of 7, we have for all ¢ > 0 that

O<U{<emb and O<Vf§e"/ﬁ“.

It follows that U™ and V7 are in fact uniformly integrable martingales.

b+a

Now choose o = 5

We can write

and consider the corresponding process M as in the hint.

M, = e‘mo‘Ut + ema‘/;,

In particular, M7 is a linear combination of the uniformly integrable martingales
U™ and V7 and thus is also a uniformly integrable martingale. We can thus
apply the stopping theorem with stopping times 0 < 7 to get

E[M,] = E[M;)] = 2 cosh (x/ﬁb ;r “) .

On the other hand, since 7, can never equal 7, we have
E[MT] = E[MTl{Ta<Tb}] + E[MT1{7a>Tb}]
_Janb=a o gy b—a o .
=€ vaA 2 E[e A 1{7’a<7'b}] +e\/ﬁ 2 E[e A 1{7’a<7'b}]
+ embiTaE[e*)‘Tl{Ta>Tb}] + €7mlk7uE[efATl{Ta>Tb}]
(6\/ﬁb_7“ + 6—\/517_7‘1)E[ —/\T]

e

= 2cosh (mb 3 a) Ele™].

It follows that

cosh(%24/2))

E[e_AT] = COSh(b;\/ﬁ)

as required.
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(b) Similarly to part (a), we consider the martingale N = (IV;);>0 given by

Nt = e\/ﬁ(Wt*a)*At —V2A(Wi—a) =\t

— €

with a = &2, Arguing analogously as in part (a), we arrive at

E[N,] = E[N,] = —2sinh (x/ﬁb ; a) .

On the other hand, we have

_VaRb=a o g bma s
E[N‘r] =e V2A 2 E[e A ]‘{Ta<Tb}] - 6m 2 E[e A 1{Ta<Tb}]
+e QAIFTQE[B_)‘Tl{Ta>Tb}] — e_mb_TaE[e_)‘Tl{Ta>Tb}]

b—
= —2sinh (v 2\ 5 CL) E[eiATl{Ta<Tb}]

b—
+ 2sinh (\/ 2\ 5 a) E[67A71{7a>7'b}]7

so that

[\]

—2sinh <\/2)\b J; a) — —2sinh <\/2)\b _ “) Ele 1, )]

+ 2sinh (x/ﬁ b= “) Ele ™ 1(r,5m1]- (3)

\)

From part (a), we have

2 cosh (@b : ) — B[M,] = 2cosh (mb ; ) Ble]

= 2cosh (\/ 2)\b ; a) Ele ™1 <y

b—
+ 2cosh (\/2)\ > a) Ele ™ 1gony). (4)

We now multiply (3) by cosh(v2A%5%) and (4) by sinh(v/2A%%) and subtract
to get

b b b -
cosh (\/2)\ + “) sinh <\/2)\ . “) 4 sinh <\/2A;“> cosh (\/2)\ _ “)

2

b— b—
— cosh (\/2)\2a> sinh (\/2)\ ; “) Ele ™ 1, <))

b— b—
+ sinh (\/ 2)\2a> cosh (\/ 2\ 5 a) Ele ™1, <yl
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Using the identity sinh(z + y) = sinh(z) cosh(y) 4 cosh(x) sinh(y) twice, we
rewrite the above as

sinh(bv/2X) = sinh ((b — a)V2) Ele ™ 17, <r3).
Rearranging gives

sinh(bv/2\)
sinh((b — a)v2))’

Ele ™ 1{mry] = Ele M 1{p,cny] =

as required.

(¢) We compute, using part (b) and the dominated convergence theorem,

P{Ta < Tb] = E[1{7a<7b}]
= lim E[G_ATl{Ta<Tb}]

L0
sinh(b\/ﬁ)
im
MO sinh((b — a)v/2)\)
sinh(bA)
A0 sinh((b — a)\)
b lim cosh (b))
b —a Mo cosh((b—a)\)
b
b—a
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