Brownian Motion and Stochastic Calculus Exercise Sheet 5

Submit by 12:00 on Wednesday, March 26 via the course homepage.

Exercise 5.1 Let (S, \mathcal{S}) be a measurable space, $Y = (Y_t)_{t \ge 0}$ the canonical process on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$, i.e., $Y_t(y) = y(t)$ for $y \in S^{[0,\infty)}$, $t \ge 0$, and $(K_t)_{t\ge 0}$ a transition semigroup on (S, \mathcal{S}) . Moreover, for each $x \in S$, assume that there exists a unique probability measure \mathbb{P}_x on $(S^{[0,\infty)}, \mathcal{S}^{[0,\infty)})$ under which Y is a Markov process with transition semigroup $(K_t)_{t\ge 0}$ and initial distribution $\nu = \delta_{\{x\}}$.

Suppose $Z \ge 0$ is an $\mathcal{S}^{[0,\infty)}$ -measurable random variable on $S^{[0,\infty)}$. Use the monotone class theorem to prove that the map $x \mapsto \mathbb{E}_x[Z], x \in S$, is \mathcal{S} -measurable.

Exercise 5.2 Suppose $X = (X_t)_{t \ge 0}$ is a right-continuous process with stationary and independent increments null at 0. Show that for any finite stopping time τ , the process $X^{(\tau)} = (X_t^{(\tau)})_{t \ge 0}$ given by

$$X_t^{(\tau)} := X_{\tau+t} - X_{\tau}$$

is independent of \mathcal{F}_{τ} .

Hint: For any $p \in \mathbb{N}$, $0 \leq t_1 < \ldots, t_p$ and bounded and measurable $F : \mathbb{R}^p \to \mathbb{R}$, the stationary increments of X imply that

$$E[F(X_{t_1}, \dots, X_{t_p})] = E[F(X_{t_1+h} - X_h, \dots, X_{t_p+h} - X_h)], \quad \forall h \ge 0.$$

Exercise 5.3 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion and for each $a \ge 0$, define the stopping time

$$T_a := \inf\{t \ge 0 : W_t = a\}.$$

Show that the stochastic process $T = (T_a)_{a \ge 0}$ has stationary and independent increments, in the sense that, for every $0 \le a \le b$, $T_b - T_a$ is independent of $\sigma(T_c: 0 \le c \le a)$ and has the same distribution as T_{b-a} .

Exercise 5.4

Updated: March 19, 2025

(a) Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$ be a filtered probability space with $\Omega = \{\omega_1, \ldots, \omega_k\}$ finite and $\mathcal{F} = 2^{\Omega}$.

Show that the \mathbb{R}^k -valued process

$$X_t = (P[\{\omega_1\} | \mathcal{F}_t], \dots, P[\{\omega_k\} | \mathcal{F}_t])$$

is a Markov process.

- (b) Let W be a Brownian motion. Which of the following processes X are Markov? Write down the corresponding transition kernels in those cases.
 - 1. $X_t = |W_t|$ (reflected Brownian motion).
 - 2. $X_t = \int_0^t W_u \, du$ (integrated Brownian motion).
 - 3. $X_t = W_{\tau_a \wedge t}$, where $\tau_a = \inf\{t \ge 0 : W_t \ge a\}$ is the hitting time of a > 0.
 - 4. $X_t = W_t^{\tau}$ for a random time $\tau \sim \text{Exp}(1)$ independent of W.
 - 5. $X_t = t t \wedge \tau$, where $\tau \sim \text{Exp}(1)$ is a random time.