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Exercise 5.1 Let (S,S) be a measurable space, Y = (Y;):>0 the canonical process
on (S0 S02)) i Yi(y) = y(t) for y € S ¢ > 0, and (K,);> a transition
semigroup on (S,S). Moreover, for each = € S, assume that there exists a unique
probability measure P, on (S1%°) S0:)) under which Y is a Markov process with
transition semigroup (K;)¢>o and initial distribution v = dg,y.

Suppose Z > 0 is an SI®>)-measurable random variable on S1%>) . Use the monotone
class theorem to prove that the map x — E,[Z],x € S, is S- measurable.

Solution 5.1 Let # denote the real vector space of all bounded, S°°)-measurable
functions Z : S — R such that the map z — E,[Z], z € S, is S-measurable.
Since pointwise limits of measurable functions are measurable, H is closed under
monotone bounded convergence. The family

= {H fr(Yy) :neN0=1t) <ty <--- <ty fr : S = R S-measurable, bdd}

is closed under multiplication and o(M) = S, Clearly 1 € M, and thus it
remains to show that M C #H. Indeed, for an element Z = [I}_, fx(Y:,) in M, we
have for all z € S that

E /5{x} dfo fo Ty /Kt1 —to $07d$1)f1 $1 /Ktn—tn 1($n 1ad95n)fn($n)

= folz /Kt1 to (2, dz1) f1(21) /Ktn—tn (@1, dwn) fo (@) (1)
Using measure-theoretic induction, we can see that x — [ g(y)K(z,dy), x € S, is

S-measurable for any bounded, S-measurable function ¢g : S — R and any stochastic
kernel K on (5,8). Now notice that we can rewrite (1) as

E,[Z] = fo(x) [ gla)Ki (. dar),
where

g(z1) == fi(z1) /S Ky, (1, da) fo(0) /S Ky (201, ) fo ().
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So by proceeding by induction on n, we may assume that ¢ is measurable and thus so
is x — E,[Z]. We conclude that z — E,[Z] is S-measurable for any Z € M.

We can now apply the monotone class theorem to get that H contains all bounded,
Sl0>)_measurable Z. For a general SI®*)-measurable Z > 0, the montone con-
vergence theorem implies for each = € S that E,[Z] = lim,,_,, E.[Z A n|. Thus,
as a pointwise limit of S-measurable functions, x — E,[Z] is S-measurable. This
completes the proof.

Exercise 5.2 Suppose X = (X})>0 is a right-continuous process with stationary
and independent increments null at 0. Show that for any finite stopping time 7, the
process X (7 = (Xt(‘r))tg(] given by

X=X, — X,

is independent of F,.

Hint: For anyp € N, 0 <ty <...,t, and bounded and measurable I’ : RP — R, the
stationary increments of X imply that

E[F<Xt17 s 7ti)] = E[F(Xt1+h - Xh7 s 7ti+h - Xh)]a Vh Z 0.

Solution 5.2 We fix Ae F,,0<t < - <t,and F': R® = R, bounded and
continuous. Notice that is is enough to show that

EQ4F(XD,. .., X{)] = PIAIE[F(X,,, ..., X,,)] (2)

tp

Indeed, taking A = Q in (2) yields
ElF( Xy, X)) = EIF(X{D, ..., X))
Then substituting this into (2) for a general A € F, gives
ELF(X ... X)) = PIAEF(XT, ... X))

which implies that the vector (X7, ..., t(:)) is independent of F, for every choice
of times 0 < #; < --- < t,. From this, it follows that the whole process X (") is

independent of F,.

So it remains to establish (2). For every n € N and ¢ > 0, we write [t],, for the
smallest real number of the form k27", with k € Z,, greater than or equal to
t. With this notation, we write X (7)) = (Xt([T]”))t>0 with X" . Q — R given
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by Xt([T]")(w) = Xir@)utt(W) = Xy, (w). Since X is right-continuous and F is
continuous, we have

F(X(T)

t1 o9

LX) = dim P x (),

n—oo

Using that F' is bounded, we can then apply the dominated convergence theorem to
get

E[14F (X

t1 9

X = im B R xR,

n—oo

Now for fixed n, notice that [7], takes values in {k27™ : k € Z, }, with [7],(w) = k27"
if and only if (k —1)27" < 7(w) < k27™. So we can write

ElLaF(x T x ()

=Y E[1al{g_1yo-n<r<ho-mp F(Xpo-nie, — Xno—n, ..., Xia-nye, — Xpon)]
k=0

=Y Elanqg-12-n<r<hz-mF (Xpo-nie, — Xpon, o, Xppngy, — Xpon)].
k=0

But the vector (Xpo-niy, — Xpon,..., Xponpy, — Xpon) is independent of Fyon,
since X has independent increments. Moreover, we have

An{k—=1)2"" <7 <k2" = (An{r <27} N{r < (k—1)27"}° € Fro-n.
We thus have
E[lAn{(k_1)277b<7—<k277b}F(Xk27’n+t1 - Xk2*"7 N ,Xk2—7L+tp - sz—n>]

= PIAN{(k—1)27" < 7 < k2" E[F(Xpa-rsn, — Xea-ns -, Xg-npr, — Xor)]
= PIAN{(k—1)27" < 7 <kK2"}E[F(Xy,..., X)),

where the hint is used to get the last equality. Summing over k € Z, gives

E,F(x L xTY) = PIAIE[F(X,,, ..., X)),

P

and letting n — oo yields (2), completing the proof.

Exercise 5.3 Let W = (W;)0 be a Brownian motion and for each a > 0, define
the stopping time
T, :=inf{t > 0: W, =a}.

Show that the stochastic process T' = (7},),>0 has stationary and independent
increments, in the sense that, for every 0 < a < b, T, — T, is independent of
o(T.: 0 < ¢ < a) and has the same distribution as Ty_,.
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Solution 5.3 Fix 0 < a < b. We first show that T, — T, < T,_,. To this end, define

the process W) = (Wt(Ta))t>O by
Wt(Ta) = 1{Ta<00}(WTa+t —_— WTE).

Since T, < oo P-a.s., W(%) is a Brownian motion (by Example 3.2.23 and Theorem
3.2.28, as discussed in the proof of Theorem 3.3.2). For each ¢ € R, define the
stopping time

Se:=inf{t = 0: W™ = ¢},

Then as W) is a Brownian motion, we have T},_, @) Sp—_a. On the other hand, we
have

Sy =inf{t > 0: W =b—a}
=inf{t > 0: Wr,, = b}
=inf{T,+t:t>0and Wr,,, =b} — T,
=inf{s:s>T, and W, = b} —T,.

VWV

Since 0 < a < b, we have that (for almost every w € Q) Wi(w) = b only if s > T,(w).
Therefore,

Sp—q =1inf{s: s >T, and W, = b} — T,
=inf{s > 0: W, =0} — 1T,
=T, —1T,.

Hence Ty_, @ T, — T,, as required.

It remains to show that T, — T, is independent of o (T, : 0 < ¢ < a). We first prove
that T, — T, is independent of Fr,. Recalling that Sy, = T}, — T, we write

s€QN[0,t]

(Spa <t} = { inf (W™ — (b—a)| = 0}.

By the strong Markov property of Brownian motion (or by Exercise 5.2), W (%) is

independent of Fr,. The above equality implies that the event {S,_, < t} is also
independent of Fr,, and thus so is S,_,. We thus have that T, — T, is independent
of Fr,. It now suffices to show that o(7.: 0 < ¢ < a) C Fr,.

For each 0 < ¢ < a and t > 0, we can easily see that {T. <t} € Fr.. We also have
Fr, C Fr,, and thus {7, < t} € Fr,. It follows that o(7,) C Fr, for all 0 < ¢ < a,
so that o(T. : 0 < ¢ < a) C Fr,, completing the proof.

Exercise 5.4
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(a) Let (Q,F,(Fi)i=0, P) be a filtered probability space with Q = {wy,...,wx}
finite and F = 2%,

Show that the R¥-valued process
Xi = (PH{wt | A Poet [ FD)

is a Markov process.

(b) Let W be a Brownian motion. Which of the following processes X are Markov?
Write down the corresponding transition kernels in those cases.

1. X = |W,| (reflected Brownian motion).
X; = [3 W, du (integrated Brownian motion).
Xy = Wi nt, where 7, = inf{t > 0: W; > a} is the hitting time of a > 0.

Xy = W/ for a random time 7 ~ Exp(1) independent of W.

BTl SR

Xy =t—tAT,where 7 ~ Exp(1) is a random time.

Solution 5.4
(a) Let s <t and let g be a bounded measurable function. For w € €2, we have
k k .
Elg(Xe) | F)(w) = 3 g(Xi(w) ) Pwi} | Fl() = > g(Xu(wi)) Xi(w).

i=1 i=1

Note that the g(X;(w;)) are constants and therefore the conditional expectation
is a (linear) function of Xj; so the process is Markov.

(b) 1. This is a Markov process. Let (F}V)o, (ﬂw‘)@o be the filtrations gener-
ated by W, |W|, respectively. For Borel A C [0,00), ¢t > 0 and h > 0, we
have that

P[[Wiinl € A|FY] = PWin € A|FY] + P[~Win € AL F]
/ 1 ( 7<y—2‘2m2 n <y+2vzt)2)d
e e e
AN2Th Y

_ (y=w))? _ (wrweD)?

i
— Ky(|Wi], A).

2h + e 2h

By the tower law and since the above is .Elwl—measurable, we can write
P([Wearl € AR = Kn((Wil, 4) = Pl[Weial € Alo (W),

so X is Markov.
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2.

This is not a Markov process. Let (F¥) be the filtration generated by X.
For Borel A C R,

t
P[x, e Al F)] :PlXSJr(t—s)Wer/(WT—Ws)dreA’]{f‘/]

= fioo(Xo + (= 9)W,, A),

where f;(z, A) = P[z + [3 W, dr € A], using the Markov property of W. We
also note that F}¥ = F/X, where the inclusion “2” is immediate and “C”
follows from Wy = lim, % Therefore,

PIX, € A|Ff]=P[X, € A|F'] = fio(Xo + (t = 5)W,, A).

But z — fi(z, A) is injective (strictly increasing) for A = [0, 00) and W is
not o(X,)-measurable, so X is not Markov.

This is a Markov process. Let (F7*);>o be the filtration generated by X.
For Borel A C R, define ff(w,A) = Plw + Wirr,_, € A] for t > 0 and
0 < w < a. Note that {r, <t} € F¥ for all t > 0, and moreover

{Xi=a} ={m <t} ={m <t} U{r, =a}.
Since fi(a, A) = 6,(A), we have
P[Xt—i—h €A | ]:tW] = 1{Ta<t}5a(A) + flg(Wta A)l{‘ra>t}
= 1{Xt:a}§(z(A) + f}?(Xtv A)l{Xt<a}7

where the first line is justified by the Markov property of W and the second
one follows from {7, < t} = {X; = a}. Since this is F/*-measurable and
FX C FY, we have

P[Xyin € Al FX] = P[Xpn € Al FY] = Lix,—ay0a(A) + f7(Xe, A)Lix,<a),
which is o(X;)-measurable, so X is Markov.

Remark: One can show that

fetun (o) =@ (2AE0) (SN,

for @ the distribution function of a standard Gaussian and any y < a, while
fi(w, {a}) = 20(=22).
This is not a Markov process. Note that {r < t} € F~ for each t > 0,
since
{r<tt= U N {X,=X}eF*

q€(0,t)NQ re(g,t)NQ
as X stays constant after 7. Therefore,

P[Xt €A | fSX]l{T<S} = 5XS(A>1{T<S}'
However, {1 < s} & 0(Xj); therefore X is not Markov.
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5. This is a Markov process. Indeed, we have
FX=o(tAt) =0(X,),

since 0(X;) =o(tAs)=a((tAt)As) Co(Xy) for s < t. It thus follows
immediately that X is Markov. Note that on {X; > 0} we have 7 < ¢ and
therefore X;,5 = Xi + h P-a.s. On the other hand, on {X; = 0} = {7 > t},
we have (7|{7 > t}) ~ t + Exp(1) by the memoryless property of the
exponential distribution, and therefore (X¢yp | X;) ~ 0V (h — Exp(1)). This
allows us to compute the kernel

h
Kh('ra A) = 1{a:>0}5:v+h("4> + 1{33:0} (eha{()} (A) +/0 6781{8614} dS) .
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