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Exercise 5.1 Let (S, S) be a measurable space, Y = (Yt)t⩾0 the canonical process
on (S[0,∞), S [0,∞)), i.e., Yt(y) = y(t) for y ∈ S[0,∞), t ⩾ 0, and (Kt)t⩾0 a transition
semigroup on (S, S). Moreover, for each x ∈ S, assume that there exists a unique
probability measure Px on (S[0,∞), S [0,∞)) under which Y is a Markov process with
transition semigroup (Kt)t⩾0 and initial distribution ν = δ{x}.

Suppose Z ⩾ 0 is an S [0,∞)-measurable random variable on S[0,∞). Use the monotone
class theorem to prove that the map x 7→ Ex[Z], x ∈ S, is S-measurable.

Solution 5.1 Let H denote the real vector space of all bounded, S [0,∞)-measurable
functions Z : S[0,∞) → R such that the map x 7→ Ex[Z], x ∈ S, is S-measurable.
Since pointwise limits of measurable functions are measurable, H is closed under
monotone bounded convergence. The family

M =
{

n∏
k=0

fk(Ytk
) : n ∈ N, 0 = t0 < t1 < · · · < tn, fk : S → R S-measurable, bdd

}

is closed under multiplication and σ(M) = S [0,∞). Clearly 1 ∈ M, and thus it
remains to show that M ⊆ H. Indeed, for an element Z = ∏n

k=0 fk(Ytk
) in M, we

have for all x ∈ S that

Ex[Z] =
∫

S
δ{x}(dx0)f0(x0)

∫
S

Kt1−t0(x0, dx1)f1(x1) · · ·
∫

S
Ktn−tn−1(xn−1, dxn)fn(xn)

= f0(x)
∫

S
Kt1−t0(x, dx1)f1(x1) · · ·

∫
S

Ktn−tn−1(xn−1, dxn)fn(xn). (1)

Using measure-theoretic induction, we can see that x 7→
∫

S g(y)K(x, dy), x ∈ S, is
S-measurable for any bounded, S-measurable function g : S → R and any stochastic
kernel K on (S, S). Now notice that we can rewrite (1) as

Ex[Z] = f0(x)
∫

S
g(x1)Kt1−t0(x, dx1),

where

g(x1) := f1(x1)
∫

S
Kt2−t1(x1, dx2)f2(x2)· · ·

∫
S

Ktn−tn−1(xn−1, dxn)fn(xn).
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So by proceeding by induction on n, we may assume that g is measurable and thus so
is x 7→ Ex[Z]. We conclude that x 7→ Ex[Z] is S-measurable for any Z ∈ M.

We can now apply the monotone class theorem to get that H contains all bounded,
S [0,∞)-measurable Z. For a general S [0,∞)-measurable Z ⩾ 0, the montone con-
vergence theorem implies for each x ∈ S that Ex[Z] = limn→∞ Ex[Z ∧ n]. Thus,
as a pointwise limit of S-measurable functions, x 7→ Ex[Z] is S-measurable. This
completes the proof.

Exercise 5.2 Suppose X = (Xt)t⩾0 is a right-continuous process with stationary
and independent increments null at 0. Show that for any finite stopping time τ , the
process X(τ) = (X(τ)

t )t⩾0 given by

X
(τ)
t := Xτ+t − Xτ

is independent of Fτ .

Hint: For any p ∈ N, 0 ⩽ t1 < . . . , tp and bounded and measurable F : Rp → R, the
stationary increments of X imply that

E[F (Xt1 , . . . , Xtp)] = E[F (Xt1+h − Xh, . . . , Xtp+h − Xh)], ∀h ⩾ 0.

Solution 5.2 We fix A ∈ Fτ , 0 ⩽ t1 < · · · < tp and F : Rp → R+ bounded and
continuous. Notice that is is enough to show that

E[1AF (X(τ)
t1 , . . . , X

(τ)
tp

)] = P [A]E[F (Xt1 , . . . , Xtp)]. (2)

Indeed, taking A = Ω in (2) yields

E[F (Xt1 , . . . , Xtp)] = E[F (X(τ)
t1 , . . . , X

(τ)
tp

)].

Then substituting this into (2) for a general A ∈ Fτ gives

E[1AF (X(τ)
t1 , . . . , X

(τ)
tp

)] = P [A]E[F (X(τ)
t1 , . . . , X

(τ)
tp

)],

which implies that the vector (Xτ
t1 , . . . , X

(τ)
tp

) is independent of Fτ for every choice
of times 0 ⩽ t1 < · · · < tp. From this, it follows that the whole process X(τ) is
independent of Fτ .

So it remains to establish (2). For every n ∈ N and t ⩾ 0, we write [t]n for the
smallest real number of the form k2−n, with k ∈ Z+, greater than or equal to
t. With this notation, we write X([τ ]n]) = (X([τ ]n)

t )t⩾0 with X
([τ ]n)
t : Ω → R given
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by X
([τ ]n)
t (ω) := X[τ(ω)]n+t(ω) − X[τ(ω)]n(ω). Since X is right-continuous and F is

continuous, we have

F (X(τ)
t1 , . . . , X

(τ)
tp

) = lim
n→∞

F (X([τ ]n)
t1 , . . . , X

([τ ]n)
tp

).

Using that F is bounded, we can then apply the dominated convergence theorem to
get

E[1AF (X(τ)
t1 , . . . , X

(τ)
tp

)] = lim
n→∞

E[1AF (X([τ ]n)
t1 , . . . , X

([τ ]n)
tp

)].

Now for fixed n, notice that [τ ]n takes values in {k2−n : k ∈ Z+}, with [τ ]n(ω) = k2−n

if and only if (k − 1)2−n < τ(ω) ⩽ k2−n. So we can write

E[1AF (X([τ ]n)
t1 , . . . , X

([τ ]n)
tp

)]

=
∞∑

k=0
E[1A1{(k−1)2−n<τ⩽k2−n}F (Xk2−n+t1 − Xk2−n , . . . , Xk2−n+tp − Xk2−n)]

=
∞∑

k=0
E[1A∩{(k−1)2−n<τ⩽k2−n}F (Xk2−n+t1 − Xk2−n , . . . , Xk2−n+tp − Xk2−n)].

But the vector (Xk2−n+t1 − Xk2−n , . . . , Xk2−n+tp − Xk2−n) is independent of Fk2−n ,
since X has independent increments. Moreover, we have

A ∩ {(k − 1)2−n < τ ⩽ k2−n} = (A ∩ {τ ⩽ k2−n}) ∩ {τ ⩽ (k − 1)2−n}c ∈ Fk2−n .

We thus have

E[1A∩{(k−1)2−n<τ⩽k2−n}F (Xk2−n+t1 − Xk2−n , . . . , Xk2−n+tp − Xk2−n)]
= P [A ∩ {(k − 1)2−n < τ ⩽ k2−n}]E[F (Xk2−n+t1 − Xk2−n , . . . , Xk2−n+tp − Xk2−n)]
= P [A ∩ {(k − 1)2−n < τ ⩽ k2−n}]E[F (Xt1 , . . . , Xtp)],

where the hint is used to get the last equality. Summing over k ∈ Z+ gives

E[1AF (X([τ ]n)
t1 , . . . , X

([τ ]n)
tp

)] = P [A]E[F (Xt1 , . . . , Xtp)],

and letting n → ∞ yields (2), completing the proof.

Exercise 5.3 Let W = (Wt)t⩾0 be a Brownian motion and for each a ⩾ 0, define
the stopping time

Ta := inf{t ⩾ 0 : Wt = a}.

Show that the stochastic process T = (Ta)a⩾0 has stationary and independent
increments, in the sense that, for every 0 ⩽ a ⩽ b, Tb − Ta is independent of
σ(Tc : 0 ⩽ c ⩽ a) and has the same distribution as Tb−a.
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Solution 5.3 Fix 0 ⩽ a ⩽ b. We first show that Tb − Ta
(d)= Tb−a. To this end, define

the process W (Ta) = (W (Ta)
t )t⩾0 by

W
(Ta)
t := 1{Ta<∞}(WTa+t − WTa).

Since Ta < ∞ P -a.s., W (Ta) is a Brownian motion (by Example 3.2.23 and Theorem
3.2.28, as discussed in the proof of Theorem 3.3.2). For each c ∈ R, define the
stopping time

Sc := inf{t ⩾ 0 : W
(Ta)
t = c}.

Then as W (Ta) is a Brownian motion, we have Tb−a
(d)= Sb−a. On the other hand, we

have

Sb−a = inf{t ⩾ 0 : W
(Ta)
t = b − a}

= inf{t ⩾ 0 : WTa+t = b}
= inf{Ta + t : t ⩾ 0 and WTa+t = b} − Ta

= inf{s : s ⩾ Ta and Ws = b} − Ta.

Since 0 ⩽ a ⩽ b, we have that (for almost every ω ∈ Ω) Ws(ω) = b only if s ⩾ Ta(ω).
Therefore,

Sb−a = inf{s : s ⩾ Ta and Ws = b} − Ta

= inf{s ⩾ 0 : Ws = b} − Ta

= Tb − Ta.

Hence Tb−a
(d)= Tb − Ta, as required.

It remains to show that Tb − Ta is independent of σ(Tc : 0 ⩽ c ⩽ a). We first prove
that Tb − Ta is independent of FTa . Recalling that Sb−a = Tb − Ta, we write

{Sb−a ⩽ t} =
{

inf
s∈Q∩[0,t]

|W (Ta)
s − (b − a)| = 0

}
.

By the strong Markov property of Brownian motion (or by Exercise 5.2), W (Ta) is
independent of FTa . The above equality implies that the event {Sb−a ⩽ t} is also
independent of FTa , and thus so is Sb−a. We thus have that Tb − Ta is independent
of FTa . It now suffices to show that σ(Tc : 0 ⩽ c ⩽ a) ⊆ FTa .

For each 0 ⩽ c ⩽ a and t ⩾ 0, we can easily see that {Tc ⩽ t} ∈ FTc . We also have
FTc ⊆ FTa , and thus {Tc ⩽ t} ∈ FTa . It follows that σ(Tc) ⊆ FTa for all 0 ⩽ c ⩽ a,
so that σ(Tc : 0 ⩽ c ⩽ a) ⊆ FTa , completing the proof.

Exercise 5.4
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(a) Let (Ω, F , (Ft)t⩾0, P ) be a filtered probability space with Ω = {ω1, . . . , ωk}
finite and F = 2Ω.

Show that the Rk-valued process

Xt = (P [{ω1} | Ft], . . . , P [{ωk} | Ft])

is a Markov process.

(b) Let W be a Brownian motion. Which of the following processes X are Markov?
Write down the corresponding transition kernels in those cases.

1. Xt = |Wt| (reflected Brownian motion).

2. Xt =
∫ t

0 Wu du (integrated Brownian motion).

3. Xt = Wτa∧t, where τa = inf{t ⩾ 0 : Wt ⩾ a} is the hitting time of a > 0.

4. Xt = W τ
t for a random time τ ∼ Exp(1) independent of W .

5. Xt = t − t ∧ τ , where τ ∼ Exp(1) is a random time.

Solution 5.4

(a) Let s ⩽ t and let g be a bounded measurable function. For ω ∈ Ω, we have

E[g(Xt) | Fs](ω) =
k∑

i=1
g
(
Xt(ωi)

)
P [{ωi} | Fs](ω) =

k∑
i=1

g
(
Xt(ωi)

)
X i

s(ω).

Note that the g(Xt(ωi)) are constants and therefore the conditional expectation
is a (linear) function of Xs; so the process is Markov.

(b) 1. This is a Markov process. Let (FW
t )t⩾0, (F |W |

t )t⩾0 be the filtrations gener-
ated by W, |W |, respectively. For Borel A ⊆ [0, ∞), t ⩾ 0 and h > 0, we
have that

P [|Wt+h| ∈ A | FW
t ] = P [Wt+h ∈ A | FW

t ] + P [−Wt+h ∈ A | FW
t ]

=
∫

A

1√
2πh

(
e− (y−Wt)2

2h + e− (y+Wt)2
2h

)
dy

=
∫

A

1√
2πh

(
e− (y−|Wt|)2

2h + e− (y+|Wt|)2
2h

)
dy

=: Kh(|Wt|, A).

By the tower law and since the above is F |W |
t -measurable, we can write

P [|Wt+h| ∈ A | F |W |
t ] = Kh(|Wt|, A) = P [|Wt+h| ∈ A | σ(|Wt|)],

so X is Markov.

Updated: March 19, 2025 5 / 7



Brownian Motion and Stochastic Calculus, Spring 2025 Exercise Sheet 5

2. This is not a Markov process. Let (FX
t ) be the filtration generated by X.

For Borel A ⊆ R,

P
[
Xt ∈ A | FW

s

]
= P

[
Xs + (t − s)Ws +

∫ t

s
(Wr − Ws) dr ∈ A

∣∣∣∣∣ FW
s

]
= ft−s

(
Xs + (t − s)Ws, A

)
,

where ft(x, A) = P [x +
∫ t

0 Wr dr ∈ A], using the Markov property of W . We
also note that FW

t = FX
t , where the inclusion “⊇” is immediate and “⊆”

follows from Ws = limε↓0
Xs−Xs−ε

ε
. Therefore,

P [Xt ∈ A | FX
s ] = P [Xt ∈ A | FW

s ] = ft−s

(
Xs + (t − s)Ws, A

)
.

But x 7→ ft(x, A) is injective (strictly increasing) for A = [0, ∞) and Ws is
not σ(Xs)-measurable, so X is not Markov.

3. This is a Markov process. Let (FX
t )t⩾0 be the filtration generated by X.

For Borel A ⊆ R, define fa
t (w, A) = P [w + Wt∧τa−w ∈ A] for t ⩾ 0 and

0 ⩽ w ⩽ a. Note that {τa < t} ∈ FW
t for all t > 0, and moreover

{Xt = a} = {τa ⩽ t} = {τa < t} ∪ {τa = a}.

Since fa
h (a, A) = δa(A), we have

P [Xt+h ∈ A | FW
t ] = 1{τa<t}δa(A) + fa

h (Wt, A)1{τa⩾t}

= 1{Xt=a}δa(A) + fa
h (Xt, A)1{Xt<a},

where the first line is justified by the Markov property of W and the second
one follows from {τa ⩽ t} = {Xt = a}. Since this is FX

t -measurable and
FX

t ⊆ FW
t , we have

P [Xt+h ∈ A | FX
t ] = P [Xt+h ∈ A | FW

t ] = 1{Xt=a}δa(A) + fa
h (Xt, A)1{Xt<a},

which is σ(Xt)-measurable, so X is Markov.

Remark: One can show that

fa
t (w, (−∞, y]) = Φ

(
2a − y − w√

t

)
− Φ

(
−y + w√

t

)
,

for Φ the distribution function of a standard Gaussian and any y < a, while
fa

t (w, {a}) = 2Φ
(

−a+w√
t

)
.

4. This is not a Markov process. Note that {τ < t} ∈ FX
t for each t > 0,

since
{τ < t} =

⋃
q∈(0,t)∩Q

⋂
r∈(q,t)∩Q

{Xr = Xq} ∈ FX
t

as X stays constant after τ . Therefore,
P [Xt ∈ A | FX

s ]1{τ<s} = δXs(A)1{τ<s}.

However, {τ < s} ̸∈ σ(Xs); therefore X is not Markov.
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5. This is a Markov process. Indeed, we have

FX
t = σ(τ ∧ t) = σ(Xt),

since σ(Xs) = σ(τ ∧ s) = σ((τ ∧ t) ∧ s) ⊆ σ(Xt) for s ⩽ t. It thus follows
immediately that X is Markov. Note that on {Xt > 0} we have τ < t and
therefore Xt+h = Xt + h P -a.s. On the other hand, on {Xt = 0} = {τ ⩾ t},
we have (τ | {τ ⩾ t}) ∼ t + Exp(1) by the memoryless property of the
exponential distribution, and therefore (Xt+h | Xt) ∼ 0 ∨ (h − Exp(1)). This
allows us to compute the kernel

Kh(x, A) = 1{x>0}δx+h(A) + 1{x=0}

(
e−hδ{0}(A) +

∫ h

0
e−s1{s∈A} ds

)
.

Updated: March 19, 2025 7 / 7


