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Exercise 6.1 Let W = (Wt)t⩾0 be a Brownian motion and define the stopping time
σ := inf{t ⩾ 0 : Wt > 0}. Prove that P [σ = 0] = 1, and for any 0 ⩽ a < b that

P
[
max
a⩽t⩽b

Wt > max(Wa, Wb)
]

= 1. (1)

Hint: As seen in the proof of Corollary 3.3.7, one can show that for any fixed T > 0,
the process (WT − WT −t)0⩽t⩽T is a Brownian motion on [0, T ].

Solution 6.1 We prove that almost surely, for every rational ε > 0,

max
0⩽t⩽ε

Wt > 0 and min
0⩽t⩽ε

Wt < 0. (2)

Once (2) is shown, we can see that on this probability-1 event, σ ⩽ ε for each rational
ε > 0, which yields P [σ = 0] = 1. In fact, it would already be enough to have only
P [max0⩽t⩽ε Wt > 0 for every rational ε > 0] = 1, but we will need the analogous
result for the minimum later.

To establish (2), we set

A :=
{

max
0⩽t⩽ε

Wt > 0 for all rational ε > 0
}

,

and notice that we can write, for each k ∈ N,

A =
∞⋂

n=k

{
max

0⩽t⩽1/n
Wt > 0

}
. (3)

It follows that A ∈ F1/k for each k ∈ N, and hence A ∈ ⋂∞
k=1 F1/k = F0+. So by

Blumenthal’s 0-1 law, P [A] ∈ {0, 1}. On the other hand, since the intersection in (3)
is decreasing, we have

P [A] = lim
n→∞

P
[

max
0⩽t⩽1/n

Wt > 0
]
⩾ lim inf

n→∞
P
[
W1/n > 0

]
= 1

2 ,

and therefore P [A] = 1. To show the corresponding result for the minimum of
Brownian motion, we just replace W with −W in the above argument and recall
that −W is still a Brownian motion. This completes the proof of (2).
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It remains to show (1). So fix 0 ⩽ a < b and note that

P
[

max
a⩽t⩽b

Wt > Wa

]
= P

[
max
a⩽t⩽b

(Wt − Wa) > 0
]

= P
[

max
0⩽t⩽b−a

(Wa+t − Wa) > 0
]
.

By Proposition 2.1.1, (Wa+t − Wa)t⩾0 is a Brownian motion, and thus

P
[

max
0⩽t⩽b−a

(Wa+t − Wa) > 0
]

= P
[

max
0⩽t⩽b−a

Wt > 0
]

= 1,

by (2). We have thus shown that P [maxa⩽t⩽b Wt > Wa] = 1. It now only remains to
show that P [maxa⩽t⩽b Wt > Wb] = 1. To this end, we use the hint to write

P
[

max
a⩽t⩽b

Wt > Wb

]
= P

[
max
a⩽t⩽b

(Wb − Wb−t) > Wb

]
= P

[
− min

a⩽t⩽b
Wb−t > 0

]
= P

[
min

0⩽t⩽b−a
Wt < 0

]
= 1,

by (2). This completes the proof.

Exercise 6.2 Let (S, S) = (R2, B(R2)) and for each x ∈ R2, let Px denote the
unique probability measure on (D(S), D(S)) under which the coordinate process Y
is a 2-dimensional Brownian motion starting at x. Show that Y is neighbourhood
recurrent in the sense that for any x ∈ R2,

Px[sup{t ⩾ 0 : Yt ∈ U} = ∞ for every non-empty open O ⊆ R2] = 1.

Hint: For any z ∈ R2 and r > 0, we denote by B(z, r) := {y ∈ R2 : |y − z| ⩽ r} the
closed ball of radius r centred at z. We also write TB(z,r) := inf{t ⩾ 0 : Yt ∈ B(z, r)}.
Use the fact that TB(0,r) < ∞ Px-a.s. for any x ∈ R2 and r > 0,, and apply the strong
Markov property of Brownian motion.

Solution 6.2 From the given hint, we know that

for any x ∈ R2 and r > 0, we have TB(0,r) < ∞ Px-a.s. (4)

Moreover, TB(0,r) is a Y-stopping time. Let r > 0. We define the sequence of
Y-stopping times (Ti)i∈N by

T1 := TB(0,r),

Ti+1 := T1 ◦ ϑ1+Ti
+ 1 + Ti

= inf{t ⩾ 1 + Ti : Yt ∈ B(0, r)} for i ⩾ 1.
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Note that (Ti) increases strictly monotonically to infinity. For fixed y ∈ R2 and
i ∈ N, we compute

Py[Ti+1 < ∞] = Ey[1{T1◦ϑ1+Ti
+1+Ti<∞}]

= Ey[(1{T1<∞} ◦ ϑ1+Ti
) 1{Ti<∞}]

= Ey

[
1{Ti<∞} Ey[1{T1<∞} ◦ ϑ1+Ti

| Y1+Ti
]
]
.

By the strong Markov property, Ey[1{T1<∞} ◦ ϑ1+Ti
| Y1+Ti

] = EY1+Ti
[1{T1<∞}]. So we

can write

Py[Ti+1 < ∞] = Ey

[
1{Ti<∞} EY1+Ti

[1{T1<∞}]
]

= Ey

[
1{Ti<∞} PY1+Ti

[T1 < ∞]
]

= Py[Ti < ∞],

where the in the last equality we use (4). It follows that Py[Ti < ∞] is constant
for all i ∈ N, and thus Py[Ti < ∞] = Py[T1 < ∞] = 1. Since Brownian motion
has continuous sample paths almost surely and B(0, r) is a closed set, we have that
YTi

∈ B(0, r) Py-a.s. on {Ti < ∞} for all i ∈ N. It thus follows that for any y ∈ R2,
the set {t ⩾ 0 : Yt ∈ B(0, 1

n
)} is unbounded Py-a.s. for each n ∈ N. Now, since Py is

the law of (y + Yt)t⩾0 under P0, this implies that

P0-a.s., the set {t ⩾ 0 : Yt ∈ B(z, 1
n
)} is unbounded for all z ∈ Q2, n ∈ N.

This proves the claim for x = 0, as for every open set O ⊆ R2, there exist z ∈ Q2

and n ∈ N with B(z, 1
n
) ⊆ O. The case for general x ∈ R2 follows immediately since

(Yt)t⩾0 under Px has the same law as (x + Yt)t⩾0 under P0 and O − x ⊆ R2 is open
whenever O is open. This completes the proof.

Exercise 6.3

(a) Let (Zt)t⩾0 be an adapted process with respect to a given filtration (Ft)t⩾0 and
such that for every bounded continuous function f : R → R, we have

E[f(Zt − Zs) | Fs] = E[f(Zt−s)].

Show that Z has stationary independent increments.

(b) Let (Zt)t⩾0 be a stochastic process null at zero with stationary independent
increments. Let (Wt)t⩾0 be a Brownian motion independent of (Zt)t⩾0 and let
(Ta)a⩾0 be defined by

Ta := inf{s ⩾ 0 : Ws ⩾ a}.

We know from Exercise 5.3 that the process (Ta)a⩾0 has stationary independent
increments. Show that the process (Ẑt)t⩾0 := (ZTt)t⩾0 also has stationary
independent increments.

Remark: The process (Tt)t⩾0 is called a subordinator.
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Solution 6.3

(a) To see that Z has independent increments, it suffices to show that for any
times 0 ⩽ t0 < t1 < · · · < tn and measurable bounded functionals f i : R → R,
i = 1, . . . , n, we have

E

[
n∏

i=1
f i(Zti

− Zti−1)
]

=
n∏

i=1
E[f i(Zti−ti−1)]. (5)

Indeed, taking n = 1 in (5) gives E[f(Zb − Za)] = E[f(Zb−a)] for each measur-
able bounded f : R → R and 0 ⩽ a < b. Then using this equality in the right
hand side of (5) for each i gives E[∏n

i=1 f i(Zti
−Zti−1)] = ∏n

i=1 E[f i(Zti
−Zti−1)],

which shows that Z had independent increments.

To establish (5), notice first that if the f i are bounded and continuous, we have
by the assumption in the problem that

E

[
n∏

i=1
f i(Zti

− Zti−1)
]

= E

E

 n∏
i=1

f i(Zti
− Zti−1)

∣∣∣∣∣∣ Ftn−1


= E

[
n−1∏
i=1

f i(Zti
− Zti−1)

]
E[fn(Ztn−tn−1)]

=
n∏

i=1
E[f i(Zti−ti−1)],

where we use induction on n to get the last equality. Now if for i = 1, . . . , n,
Ai ∈ B(R), we can find a sequence of continuous functions (f i,m)m∈N with a
uniform bound supm,i∈N ess sup f i,m ⩽ 1 such that f i,m → 1Ai

pointwise on R.
Therefore, we find by two applications of the dominated convergence theorem
that

E

[
n∏

i=1
1Ai

(Zti
− Zti−1)

]
= lim

m→∞
E

[
n∏

i=1
f i,m(Zti

− Zti−1)
]

= lim
m→∞

n∏
i=1

E[f i,m(Zti−ti−1)] =
n∏

i=1
E[1Ai

(Zti−ti−1)].

This extends to simple functions by linearity of the expectation, and then to
measurable bounded functions by approximation with simple functions. We
have thus proved (5) and hence Z has independent increments.

It remains to prove that Z has stationary increments, for which it suffices to
show that for any k ∈ N, h ⩾ 0 and bounded measurable f : Rk → R,

E[f(Zt1 − Zt0 , . . . , Ztn − Ztn−1)] = E[f(Zt1+h − Zt0+h, . . . , Ztn+h − Ztn−1+h)].

Letting H denote the set of bounded measurable functions such that this is
satisfied for all h ⩾ 0, we see that H is a real vector space, contains 1 and is
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closed under bounded monotone convergence by the dominated convergence
theorem. Moreover, by (5), we have H ⊇ M, where M is the set of functions
of the form f(z1, . . . , zn) = ∏n

i=1 f i(zi) for bounded measurable f i, since

E

[
n∏

i=1
f i(Zti

− Zti−1)
]

=
n∏

i=1
E[f i(Zti−ti−1)] = E

[
n∏

i=1
f i(Zti+h − Zti−1+h)

]

for all h ⩾ 0. Using the monotone class theorem, we conclude that H contains
all bounded measurable functions and therefore Z has stationary increments,
completing the proof.

Remark: We also could have proved that Z has independent increments by
using the monotone class theorem.

(b) Let 0 = t0 ⩽ t1 ⩽ · · · ⩽ tn and f i : R → R, i = 1, . . . , n, be bounded and
measurable functions. Using the independence properties together with part
(a) and the fact that (Tt)t⩾0 has stationary independent increments, we obtain

E

[
n∏

i=1
f i(Ẑti

− Ẑti−1)
]

= E

[
n∏

i=1
f i(ZTti

− ZTti−1
)
]

= E

E

 n∏
i=1

f i(ZTti
− ZTti−1

)

∣∣∣∣∣∣ FW
∞


= E

E

[
n∏

i=1
f i(Zsi

− Zsi−1)
] ∣∣∣∣∣

si=Tti , i=1,...,n


= E

( n∏
i=1

E[f i(Zsi
− Zsi−1)]

) ∣∣∣∣∣
si=Tti , i=1,...,n


= E

( n∏
i=1

E[f i(Zsi−si−1)]
) ∣∣∣∣∣

si=Tti , i=1,...,n

 .

Now for each i = 1, . . . , n, define the deterministic function gi : R → R by
gi(x) = E[f i(Zx)]. We can rewrite the above as

E

[
n∏

i=1
f i(Ẑti

− Ẑti−1)
]

= E

( n∏
i=1

gi(si − si−1)
) ∣∣∣∣∣

si=Tti , i=1,...,n


= E

[
n∏

i=1
gi(Tti

− Tti−1)
]

=
n∏

i=1
E[gi(Tti

− Tti−1)]

=
n∏

i=1
E[gi(Tti−ti−1)],
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since T has stationary independent increments. Now by independence of Z
and W , we have for each i = 1, . . . , n, that gi(Tti−ti−1) = E[f i(ZTti−ti−1

) | FW
∞ ]

and thus E[gi(Tti−ti−1)] = E[f i(ZTti−ti−1
)]. So we write

E

[
n∏

i=1
f i(Ẑti

− Ẑti−1)
]

=
n∏

i=1
E[f i(ZTti−ti−1

)]

=
n∏

i=1
E[f i(Ẑti−ti−1)].

By the same argument as in part (a), this implies that Ẑ has independent and
stationary increments, as required.

Exercise 6.4 For a right-continuous increasing function f : [0, ∞) → R, there exists
a unique measure µf on (R+, B(R+)) such that µf({0}) = f(0) and µf((0, t]) =
f(t) − f(0) for all t ⩾ 0. We call a function g : [0, ∞) → R f-integrable if∫

[0,∞) |g(s)| µf (ds) < ∞. In this case, we define
∫

g(s) df(s) :=
∫

g(s) µf (ds).

In what follows, we let f, g : [0, ∞) → R be right-continuous increasing func-
tions.

(a) Assume that f is g-integrable. Show that the function h(t) :=
∫

[0,t] f(s) dg(s) is
right-continuous. Moreover, show that if g is continuous, then h is continuous.

(b) Suppose f is g-integrable and g is f -integrable. Show the integration-by-parts
formula: for each t > 0,

f(t)g(t) − f(0)g(0) =
∫

(0,t]
f(s) dg(s) +

∫
(0,t]

g(s−) df(s)

=
∫

(0,t]
f(s−) dg(s) +

∫
(0,t]

g(s) df(s).

Remark: The above results still hold true if f and g are not increasing, but only of
finite variation. Indeed, if f is right continuous and has finite variation, there exist
increasing right-continuous functions f1, f2 : [0, ∞) → R such that f = f1 − f2. We
then say that g is f -integrable if the integrals

∫
|g(s)| µf1(ds) and

∫
|g(s)| µf2(ds) are

both finite, and in this case, we define the integral
∫

g(s) df(s) :=
∫

g(s) df1(s) −∫
g(s) df2(s). One can show that this integral is well defined in the sense that it is

independent of the choice of functions f1 and f2.

Solution 6.4

(a) Fix t ⩾ 0 and let (tn)n∈N ⊆ [0, ∞) be a sequence which decreases to t. By the
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dominated convergence theorem, we have

h(t) =
∫

[0,t]
f(s) dg(s)

=
∫

[0,∞)
1[0,t](s)f(s) µg(ds)

= lim
n→∞

∫
[0,∞)

1[0,tn](s)f(s) µg(ds)

= lim
n→∞

∫
[0,tn]

f(s) dg(s)

= lim
n→∞

h(tn),

which proves that h is right-continuous. Now assume that g is continuous.
Fix t > 0 and let (tn)n∈N ⊆ [0, ∞) be a sequence which strictly increases to t.
Again by the dominated convergence theorem, we have

lim
n→∞

h(tn) = lim
n→∞

∫
[0,tn]

f(s) dg(s)

= lim
n→∞

∫
[0,∞)

1[0,tn](s)f(s) µg(ds)

=
∫

[0,∞)
1[0,t)(s)f(s) µg(ds)

=
∫

[0,∞)
1[0,t](s)f(s) µg(ds) −

∫
{t}

f(s) µg(ds)

=
∫

[0,t]
f(s) dg(s) −

∫
{t}

f(s) µg(ds)

= h(t) −
∫

{t}
f(s) µg(ds).

It thus remains to show that
∫

{t} f(s) µg(ds) = 0. As µg((0, t]) = g(t) − g(0),
we have that µg({t}) = g(t) − g(t−) = 0 since g is continuous. Therefore, we
indeed have

∫
{t} f(s) µg(ds) = 0, completing the proof.

(b) Fix t ⩾ 0. From Fubini’s theorem, we obtain(
f(t)−f(0)

)(
g(t)−g(0)

)
=
∫

(0,t]
µf (dr)

∫
(0,t]

µg(ds) =
∫∫

(0,t]×(0,t]
µf (dr) µg(ds).

On the other hand, defining the domains

D1 := {(r, s) ∈ R2 : 0 < r ⩽ s ⩽ t},

D2 := {(r, s) ∈ R2 : 0 < s < r ⩽ t},
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we compute∫∫
(0,t]×(0,t]

µf (dr) µg(ds) =
∫∫

D1
µf (dr) µg(ds) +

∫∫
D2

µf (dr) µg(ds)

=
∫

(0,t]

∫
(0,s]

µf (dr) µg(ds) +
∫

(0,t]

∫
(0,r)

µg(ds) µf (dr)

=
∫

(0,t]

(
f(s) − f(0)

)
µg(ds)

+
∫

(0,t]

(
g(r−) − g(0)

)
µf (dr)

=
∫

(0,t]
f(s) dg(s) − f(0)g(t) + f(0)g(0)

+
∫

(0,t]
g(s−) df(s) − g(0)f(t) + g(0)f(0).

Comparing the above two expressions for
∫∫

(0,t]×(0,t] µf(dr) µg(ds) yields the
result. The second equality follows by symmetry.
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