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Exercise 6.1 Let W = (IW};);>0 be a Brownian motion and define the stopping time
o :=1inf{t > 0: W; > 0}. Prove that P[oc = 0] = 1, and for any 0 < a < b that

P |max W; > max(W,, W,)| = 1. (1)

a<t<b

Hint: As seen in the proof of Corollary 3.3.7, one can show that for any fized T > 0,
the process (W — Wr_t)o<t<r i a Brownian motion on [0,T].

Solution 6.1 We prove that almost surely, for every rational € > 0,

max W; >0 and min W; <0. (2)
0<t<e 0<t<e

Once (2) is shown, we can see that on this probability-1 event, o < ¢ for each rational

e > 0, which yields P[lo = 0] = 1. In fact, it would already be enough to have only

Plmaxg<;<c Wi > 0 for every rational ¢ > 0] = 1, but we will need the analogous

result for the minimum later.

To establish (2), we set

A= {max W; > 0 for all rational £ > O} ,

~X \E
and notice that we can write, for each k € N,

A:ﬁ{max Wt>0}. (3)
n=~k

0<t<1/n

It follows that A € F for each & € N, and hence A € N2, Fi/i = Fos. So by
Blumenthal’s 0-1 law, P[A] € {0,1}. On the other hand, since the intersection in (3)
is decreasing, we have

1
P[A] = lim P[ max W, >0] >liggi£fP{Wl/n >0] =5

n—oo | 0<t<l/n

and therefore P[A] = 1. To show the corresponding result for the minimum of
Brownian motion, we just replace W with —W in the above argument and recall
that —IV is still a Brownian motion. This completes the proof of (2).
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It remains to show (1). So fix 0 < a < b and note that

P[math >Wa] =P

a<t<h

max (W, — W,) > O] = P{ max (Woy — W,) > 0].

a<t<b 0<t<b—a

By Proposition 2.1.1, (W, — W, )i>0 is a Brownian motion, and thus

P[ max (Wa+t—Wa)>O} :P[ max Wt>0} =1,

0<t<b—a 0<t<b—a

by (2). We have thus shown that Plmax,<<; Wy > W,| = 1. It now only remains to
show that P[max,<;<, Wi > W;] = 1. To this end, we use the hint to write

P[ max W, > Wb] =P maX(Wb — Wb—t) > Wb}
a<t<b | a<t<b

= P| — min Wy_; > O}

a<t<b

= P| min Wt<0}

| 0<t<b—a

by (2). This completes the proof.

Exercise 6.2 Let (59,S) = (R? B(R?)) and for each x € R?, let P, denote the
unique probability measure on (D(S), D(S)) under which the coordinate process Y
is a 2-dimensional Brownian motion starting at x. Show that Y is neighbourhood
recurrent in the sense that for any x € R2,

P,[sup{t > 0:Y, € U} = oo for every non-empty open O C R?| = 1.

Hint: For any z € R? and r > 0, we denote by B(z,r) :={y € R*: |y — z| < r} the
closed ball of radius r centred at z. We also write Tp(.,y :=inf{t > 0:Y, € B(z,7)}.
Use the fact that T,y < 00 Py-a.s. for any x € R?* and r > 0,, and apply the strong
Markov property of Brownian motion.

Solution 6.2 From the given hint, we know that
for any z € R* and r > 0, we have Tg(,) < 0o P,-a.s. (4)

Moreover, Tg(,) is a Y-stopping time. Let r > 0. We define the sequence of
Y-stopping times (7;);en by

Ty := T,
ﬂ—&-l = T1 9] 191+Ti + 1 + ,Tz
=inf{t >1+7,:Y, € B(0,r)} fori>1
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Note that (7;) increases strictly monotonically to infinity. For fixed y € R? and
1 € N, we compute

Py[ﬂ—l—l < OO] y[l{Tloﬂ1+Ti+l+Ti<OO}}

=E
= Ey[(l{T1<OO} o /191+T7;) 1{T1<OO}]
=K

y1+Ti]]'

y1+Ti] = EYHTZ. [1{T1<oo}]- So we

o[ 17 <00y By 1173 <00y © D1,

By the strong Markov property, E,[1{7, <00} © V147,
can write
Py [T;-‘rl < OO] = ]Ey [1{T¢<OO} EY1+TZ. [1{T1<OO}H

= ]Ey {1{Tl<oo} ]PY1+T1- [Tl < OOH

=P, [T; < o0,
where the in the last equality we use (4). It follows that P,[T; < oo| is constant
for all © € N, and thus P,[T; < oo] = P,[T} < oo] = 1. Since Brownian motion
has continuous sample paths almost surely and B(0,r) is a closed set, we have that
Yr, € B(0,7) Py-a.s. on {T; < oo} for all i € N. It thus follows that for any y € R?

the set {¢ > 0:Y; € B(0,2)} is unbounded Py-a.s. for each n € N. Now, since P, is
the law of (y + Y;)i>0 under Py, this implies that

Py-a.s., the set {t > 0:Y, € B(z,+)} is unbounded for all z € Q*,n € N.

This proves the claim for z = 0, as for every open set O C R?, there exist z € Q?
and n € N with B(z, %) C O. The case for general = € R? follows immediately since
(Y:)¢=0 under P, has the same law as (z + Y;)so under Py and O — 2 C R? is open
whenever O is open. This completes the proof.

Exercise 6.3

(a) Let (Z;)i=0 be an adapted process with respect to a given filtration (F;)¢>o and
such that for every bounded continuous function f : R — R, we have

E[f(Zt - ZS) ‘ Fs] = E[f<ths)]
Show that Z has stationary independent increments.

(b) Let (Z)¢=0 be a stochastic process null at zero with stationary independent
increments. Let (W});>0 be a Brownian motion independent of (Z;):>o and let
(T%)a=0 be defined by

T, :=inf{s > 0: W, > a}.

We know from Exercise 5.3 that the process (T, )q>0 has stationary independent
increments. Show that the process (Z;)i>0 := (Z71,)i=0 also has stationary
independent increments.

Remark: The process (T})i=o s called a subordinator.
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Solution 6.3

(a) To see that Z has independent increments, it suffices to show that for any
times 0 <ty < t; < --- < t, and measurable bounded functionals f': R — R,
1=1,...,n, we have

[Hf 1 HE (Zt—t0)]- (5)

Indeed, taking n =1 1in (5) gives E[f(Zy, — Z,)] = E[f(Zy—,)| for each measur-
able bounded f: R — R and 0 < a < b. Then using this equality in the right
hand side of (5) for each i gives B[l f'(Z,— Zi, ,)] = I1ioy Elf(Zi, — Z1, ),
which shows that Z had independent increments.

To establish (5), notice first that if the f* are bounded and continuous, we have
by the assumption in the problem that

s

Hﬂ ﬁﬂ ”

:Ehym%_aHﬂmﬂ%W%m

n

H S (Z—)]s

where we use induction on n to get the last equality. Now if for e =1,...,n,
A; € B(R), we can find a sequence of continuous functions (f*™),,en with a
uniform bound sup,, ;cy esssup [ < 1 such that f™ — 14, pointwise on R.
Therefore, we find by two applications of the dominated convergence theorem
that

n

= lim H fzm Ztl—tl 1)] = H E[]‘Ai(Zti_ti—l)]'

T om0 -
i=1

This extends to simple functions by linearity of the expectation, and then to
measurable bounded functions by approximation with simple functions. We
have thus proved (5) and hence Z has independent increments.

It remains to prove that Z has stationary increments, for which it suffices to
show that for any £ € N, h > 0 and bounded measurable f : R¥ — R,

E[f(Ztl - Zt07 ceey Ztn - Ztnfl)] = E[f(ZtH-h - Zto+h7 R Ztn+h - Ztn71+h)]'

Letting H denote the set of bounded measurable functions such that this is
satisfied for all h > 0, we see that H is a real vector space, contains 1 and is
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(b)

closed under bounded monotone convergence by the dominated convergence
theorem. Moreover, by (5), we have H O M, where M is the set of functions
of the form f(z1,...,2,) = [1l~, fi(z:) for bounded measurable f* since

E lﬁ fz<th - Zti—l)‘| = ﬁ E[fi(Zti_ti—l)] =F lzllfi(ZtH-h - Zti—1+h)

for all h > 0. Using the monotone class theorem, we conclude that H contains
all bounded measurable functions and therefore Z has stationary increments,
completing the proof.

Remark: We also could have proved that Z has independent increments by
using the monotone class theorem.

Let 0 =ty <t; <---<tpyand f.: R —- R, i=1,...,n, be bounded and
measurable functions. Using the independence properties together with part
(a) and the fact that (7});>0 has stationary independent increments, we obtain

E [ﬂ fi<2ti — Zti_l)] =F ﬁ fi<ZTti - ZTti_l)‘|
i—1 Li

i=1

—E|E ﬁfi(ZTti—ZTtH)|]-“on”

=L |E H fl<Zsz - Z5¢1)] }
Li=1 si=1y,,1= n

g (U E[f(Z,, - ZSH)]>

—E (f[l E[fi(Zsi—si_l)]>

8;=Tt;,1=1,...,n

Now for each i = 1,...,n, define the deterministic function ¢ : R — R by
g'(z) = E[f"(Z,)]. We can rewrite the above as

E [ﬁ fz(th - 2152‘1)] =F

(ﬁ g9'(si — Sz‘l))

i=1
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since T" has stationary independent increments. Now by independence of Z
and W, we have for each i = 1,...,n, that ¢'(T},—,_,) = E[f"(Z1,_, ) | F¥]
and thus E[g"(Ti,—,_,)] = E[f(Z1,,_,_,)]. So we write

n

E [ﬁ fZ(th - Zti—l)‘| = ]:[1 E[fi(ZTtifti,l )]

= H E[fi(Zti—ti—l>]'

=1

By the same argument as in part (a), this implies that Z has independent and
stationary increments, as required.

Exercise 6.4 For a right-continuous increasing function f : [0, 00) — R, there exists
a unique measure py on (R4, B(Ry)) such that pur({0}) = f(0) and ps((0,¢]) =
f(t) — f(0) for all ¢ > 0. We call a function g : [0,00) — R f-integrable if

Jio.00) [9(8)| 115 (ds) < oo. In this case, we define [ g(s)df(s) := [ g(s) ps(ds).

In what follows, we let f,¢g : [0,00) — R be right-continuous increasing func-
tions.

(a) Assume that f is g-integrable. Show that the function h(t) := [, 4 f(s) dg(s) is
right-continuous. Moreover, show that if g is continuous, then A is continuous.

(b) Suppose f is g-integrable and g is f-integrable. Show the integration-by-parts
formula: for each t > 0,

FO9(0) = F0)9O) = [ Fs)dgls) + [ gls-)df(s)

= —)dg(s +/
(}

Remark: The above results still hold true if f and g are not increasing, but only of
finite variation. Indeed, if f is right continuous and has finite variation, there exist
increasing right-continuous functions fi, fa : [0,00) — R such that f = f1 — fo. We
then say that g is f-integrable if the integrals [ |g(s)| ps, (ds) and [ |g(s)|pys,(ds) are
both finite, and in this case, we define the integral [ g(s) df(s) := [g(s) dfi(s) —
[ g(s) dfa(s). One can show that this integral is well defined in the sense that it is
independent of the choice of functions fi and fs.

Solution 6.4

(a) Fix t > 0 and let (¢,)nen C [0,00) be a sequence which decreases to t. By the
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dominated convergence theorem, we have
ht) = [ f(s)dg(s)
[0,2]
= /[0 - Lio(8)f(s) pg(ds)

= lim 1i0.4,1(5) f(5) pg(ds)

n—o0 [0,00)

= lim f(s)dg(s)

=00 J10,tn]

= lim h(t,),

which proves that h is right-continuous. Now assume that g is continuous.
Fix ¢ > 0 and let (£,)nen C [0,00) be a sequence which strictly increases to t.
Again by the dominated convergence theorem, we have

lim A(t,) = lim f(s)dg(s)

—lim [ L (5)F(5) pe(ds)

n—oo [0700)

= [0, Toa(5)7(s) mg(ds)

= o Vo) ds) = [ F(5) ()

= [, o) = [ (5) ()

= h(t) = [ 1) nglds).

It thus remains to show that [i, f(s) pg(ds) = 0. As uy((0,]) = g(t) — 9(0),
we have that p,({t}) = g(t) — g(t—) = 0 since g is continuous. Therefore, we
indeed have [i;, f(s) pg(ds) = 0, completing the proof.

(b) Fix ¢ > 0. From Fubini’s theorem, we obtain

(F®=1©) (9)-9(0) = [ plar) [

(0,t] (0,¢]

ds) = // d ds).
fg(ds) 01 (0 pp(dr) pg(ds)
On the other hand, defining the domains

Dy :={(r,s) eR*: 0<r <s <t}
Dy:={(r,s) eR*: 0 < s <r <t}
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we compute

// g (dr) pg(ds) // g (dr) pg(ds) —i—// g (dr) pg(ds)
(0,6]x(0,4]

o0 Jios g (dr) pg(ds) +/ oa o )ug (ds) pp(dr)
/ (F(5) = £(0)) py(dls)
/ (9r=) = 9(0)) s (ar)
= | f(s)dg(s) — f(0)g(t) + f(0)g(0)

(0.4]

* / — 9(0) f(t) + g(0) f(0).

Comparing the above two expressions for [[i ;x4 #r(dr) pe(ds) yields the
result. The second equality follows by symmetry.
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