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Exercise 7.1 Let M ∈ M0,loc. Establish the following properties.

(a) There exists a localising sequence (τn)n∈N for M such that for each n ∈ N, the
stopped process M τn is a uniformly integrable martingale.

(b) If τ is a stopping time, then M τ ∈ M0,loc.

(c) Let (τn)n∈N be a localising sequence for M and (σn)n∈N be a sequence of
stopping times with σn ↑ ∞ P -a.s. Then (τn ∧ σn)n∈N is also a localising
sequence for M .

(d) The space M0,loc is a vector space.

Solution 7.1

(a) Let (Tn) be a localising sequence for M and for each n ∈ N, define τn := Tn ∧ n.
Then (τn)n∈N is a sequence of stopping times with τn ↑ ∞ P -a.s. Now for each
n ∈ N, we can write M τn = (MTn

n∧t)t⩾0. Since MTn is a martingale, it follows
that M τn is martingale closed on the right and thus uniformly integrable, as
required.

(b) Let (τn)n∈N be a localising sequence for M . So for each n ∈ N, M τn is a
martingale. Then by Exercise 4.2(b), we have that (M τn)τ is also a martingale.
But (M τn)τ = (M τ )τn , which shows that M τ is indeed a local martingale with
localising sequence (τn)n∈N.

(c) Note that (τn ∧ σn)n∈N is a sequence of stopping times with τn ∧ σn ↑ ∞ P -a.s.
So by the same reasoning as in part (b), we have that M τn∧σn = (M τn)σn is a
martingale for each n ∈ N, and thus (τn ∧ σn)n∈N is a localising sequence for
M .

(d) Let (τn)n∈N be a localising sequence for M . For λ ∈ R, λM τn is still a
martingale for each n ∈ N by linearity of the conditional expectation, and thus
λM ∈ M0,loc (with localising sequence (τn)n∈N). Now take N ∈ M0,loc with
localising sequence (σn)n∈N. By part (c), M τn∧σn and N τn∧σn are martingales
for each n ∈ N, and thus so is M τn∧σn + N τn∧σn = (M + N)τn∧σn . It follows
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that M + N ∈ M0,loc with localising sequence (τn ∧ σn)n∈N. As 0 ∈ M0,loc, we
have shown that M0,loc is indeed a vector space, as required.

Exercise 7.2 Suppose that M ∈ M0,loc with [M ] ≡ 0. Show that M ≡ 0 in the
sense that M is indistinguishable from the 0 process.

Solution 7.2 By Theorem 4.1.9(2), we have that for each t ⩾ 0, ∆Mt = (∆Mt)2 = 0,
and thus M is continuous, i.e. M ∈ Mc

0,loc. Now let (τk)k∈N be a localising sequence
for M . For each k ∈ N, consider the stopping time

σk := inf{t ⩾ 0 : |Mt| ⩾ k}.

As M0 = 0 and M is continuous, it follows that (σk)k∈N is a sequence of stopping times
such that σk ↑ ∞ P -a.s. By Exercise 7.1(c), we have that Tk := τk ∧ σk is a localising
sequence for M . Note that by construction of σk, the martingale MTk is bounded
by k, and in particular MTk is square-integrable. By Theorem 4.1.9(4), we have
[MTk ] = [M ]Tk = 0, and by Theorem 4.1.9(5), we have that (MTk)2 = (MTk)2 − [MTk ]
is a martingale. So for each t ⩾ 0,

E[(MTk
t )2] = E[(MTk

0 )2] = 0,

and thus MTk
t = 0 P -a.s. Letting k → ∞ shows that Mt = 0 P -a.s. By taking a

countable intersection we can see that

P [Mt = 0 for all t ∈ Q+] = 1.

Since M is continuous, this implies that M is indistinguishable from the 0 process,
which completes the proof.

Exercise 7.3 Let M ∈ H2
0. Show that bE is dense in L2(M).

Hint: Equip Ω = Ω × [0, ∞) with the predictable σ-algebra P. Let C := E[M2
∞] and

consider the probability measure PM = C−1P ⊗ [M ] on (Ω, P). Let (Πn)n∈N be an
increasing sequence of partitions of [0, ∞) with limn→∞ |Πn| = 0. Use the martingale
convergence theorem on (Ω, P , PM) with respect to the discrete filtration (Pn)n∈N
defined by

Pn := σ({Ai × (ti, ti+1] : ti ∈ Πn, Ai ∈ Fti
}).

Solution 7.3 We first note that L2(M) = L2
PM

, since both are equal to the set of
(equivalence classes of) predictable processes H̃ such that

∥H̃∥2
L2(M) = E

[∫ ∞

0
H̃2

s d⟨M⟩s

]
= CEM [H̃2] = C∥H̃∥2

L2
PM

< ∞.
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Let H ∈ L2(M). We want to approximate H by elements of bE . Since H1{|H|≤n} → H
in L2(M) by the dominated convergence theorem, we only need to approximate each
H1{|H|⩽n}. Thus we assume without loss of generality that H is bounded.

Define a PM -martingale (Hn)n∈N adapted to (Pn)n∈N by Hn := EM [H | Pn]. Since
H ∈ L2

PM
= L2(M), we have that (Hn)n∈N is an L2

PM
-bounded martingale. Let

P∞ = σ(⋃
n∈N Pn) and H∞ := E[H | P∞]. By the martingale convergence theorem,

we have that Hn → H∞ PM -a.s. and in L2
PM

.

We claim that P∞ = P and that Hn ∈ bE for each n ∈ N. If this holds, then we can
approximate H = H∞ in L2

PM
= L2(M) as the limit of (Hn)n∈N, where Hn ∈ bE for

each n ∈ N. Thus, the two claims imply the result.

To show that P∞ = P, we first note that Pn ⊆ P for each n ∈ N. Indeed, let
H̃ = 1Ai

1(ti,ti+1] for some ti ∈ Πn and Ai ∈ Fti
. As H̃ is adapted and left-continuous,

it is predictable, i.e., P-measurable, and so Pn ⊆ P. Taking the union gives
P∞ ⊆ P .

For the reverse inclusion P ⊆ P∞, we show that any left-continuous adapted process
H̃ is P∞-measurable. To this end, define

H̃n :=
∑

ti∈Πn

1(ti,ti+1]H̃ti
,

which is Pn-measurable, hence also P∞-measurable for each n ∈ N. For all t ⩾ 0 and
n ∈ N, we have that H̃n

t (ω) = H̃t(n)(ω), where t(n) := max{ti ∈ Πn : ti < t}. We
have that t(n) is increasing in n, since (Πn)n∈N is an increasing sequence. Moreover,
t(n) ↑ t since |Πn| ↓ 0. As H̃ is left-continuous, we conclude that H̃n

t (ω) → H̃t(ω)
for all t ⩾ 0 and ω ∈ Ω. Therefore, as each H̃n is P∞-measurable, so is H̃. We have
thus shown that P∞ = P , as claimed.

It remains to show that Hn ∈ bE for each n ∈ N. For this we give two proofs.

Proof 1: Note that Hn = EM [H | Pn] is bounded since H is. As Hn is Pn-measurable,
the result follows if we show that every bounded Pn-measurable process belongs to
bE . To this end, we use the monotone class theorem. Let

M := {1Ai
1(ti,ti+1] : ti ∈ Πn, Ai ∈ Fti

}

and

H :=

H̃ =
∑

ti∈Πn

Zi1(ti,ti+1] : Zi bounded and Fti
-measurable

 .

It is clear that M is closed under products, generates Pn and is contained in H.
Moreover, H is a vector space and contains 1. To see that H is closed under
bounded monotone convergence, let H ∋ H̃m ↑ H̃. Then, it must be the case that
Zm

i = H̃m
ti+1

↑ H̃ti+1 =: Zi, where Zi is bounded and Fti
-measurable. Moreover,

since
H̃t = lim

m→∞
H̃m

t = lim
m→∞

H̃m
t(n) = H̃t(n), t ≥ 0,
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we see that
H̃ =

∑
ti∈Πn

Zi1(ti,ti+1] ∈ H.

Therefore, by the monotone class theorem, H contains all bounded Pn-measurable
processes. Since H ⊆ bE , we have shown that every bounded Pn-measurable process
belongs to bE , as required.

Proof 2: We claim that Hn
t = ∑

ti∈Πn
1{t∈(ti,ti+1]}Zi for each n ∈ N, where

Zi := E[
∫ ti+1

ti
Hu d⟨M⟩u | Fti

]
E[⟨M⟩ti+1 − ⟨M⟩ti

| Fti
] .

If this holds, then Hn ∈ bE , as Zi is bounded and Fti
-measurable.

Set Kn
t := ∑

ti∈Πn
1{t∈(ti,ti+1]}Zi. To show that Kn = EM [H | Pn] = Hn, first note

that Kn is Pn-measurable. We also have that {Ai × (ti, ti+1] : ti ∈ Πn, Ai ∈ Fti
} is

a π-system generating Pn. Therefore, it suffices to check that for each ti ∈ Πn and
Ai ∈ Fti

we have EM [1Ai×(ti,ti+1]K
n] = EM [1Ai×(ti,ti+1]H]. So we write

EM [1Ai×(ti,ti+1]H] = C−1E
[
1Ai

∫ ti+1

ti

Hu d⟨M⟩u

]
= C−1E

[
1Ai

E

[∫ ti+1

ti

Hu d⟨M⟩u

∣∣∣∣∣ Fti

]]

= C−1E

[∫ ∞

0
1Ai

E[
∫ ti+1

ti
Hu d⟨M⟩u | Fti

]
E[⟨M⟩ti+1 − ⟨M⟩ti

| Fti
]1{s∈(ti,ti+1]} d⟨M⟩s

]
= EM [1Ai×(ti,ti+1]K

n],

as claimed. This completes the proof.

Exercise 7.4 For M ∈ Mc
0,loc, we denote by L2

loc(M) the space of all predictable
processes for which there exists a sequence of stopping times (τn)n∈N such that
τn ↑ ∞ P -a.s. and E[

∫ τn
0 H2

s d⟨M⟩s] < ∞ for each n ∈ N.

(a) Let H be predictable. Show that

H ∈ L2
loc(M) ⇐⇒

∫ t

0
H2

s d⟨M⟩s < ∞ P -a.s. for each t ⩾ 0.

(b) Show that for any continuous semimartingale X, any adapted RCLL process H
and any sequence of partitions (Πn)n∈N of [0, ∞) with lim

n→∞
|Πn| = 0, we have

∫ ·

0
Hs− dXs = lim

n→∞

∑
ti∈Πn

Hti
(Xti+1∧· − Xti∧·) ucp,

where ucp stands for uniformly on compacts in probability.
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(c) Find an adapted process with right-continuous paths which is not locally
bounded.

Solution 7.4

(a) For the forward direction, let H ∈ L2
loc(M) and let (τn)n∈N be a corresponding

localising sequence. So for each n ∈ N, we have

P
[ ∫ τn

0
H2

s d⟨M⟩s < ∞
]

= 1.

Fix any t ⩾ 0. For each n ∈ N, we have

P
[ ∫ t

0
H2

s d⟨M⟩s = ∞
]

= P

[{ ∫ t

0
H2

s d⟨M⟩s = ∞
}

∩ {τn ⩽ t}
]

+ P

[{ ∫ t

0
H2

s d⟨M⟩s = ∞
}

∩ {τn > t}
]

⩽ P [τn ⩽ t] + P

[{ ∫ τn

0
H2

s d⟨M⟩s = ∞
}

∩ {τn > t}
]

⩽ P [τn ⩽ t] + P
[ ∫ τn

0
H2

s d⟨M⟩s = ∞
]

= P [τn ⩽ t].

Thus, we conclude that

P
[ ∫ t

0
H2

s d⟨M⟩s = ∞
]
⩽ lim

n→∞
P [τn ⩽ t] = 0.

Conversely, let H be predictable such that∫ t

0
H2

s d⟨M⟩s < ∞ P -a.s. for each t ⩾ 0. (1)

Consider the sequence of stopping times (τn)n∈N defined by

τn := inf
{

t ≥ 0
∣∣∣∣ ∫ t

0
H2

s d⟨M⟩s > n
}

.

From (1), we obtain τn ↑ ∞ P -a.s. Moreover, by the definition of τn and the
(left)-continuity of

∫
H d⟨M⟩, we have for each n ∈ N that

E
[ ∫ τn

0
H2

s d⟨M⟩s

]
⩽ n < ∞.

This completes the proof.
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(b) For each n ∈ N, set
Hn :=

∑
ti∈Πn

Hti
1(ti,ti+1].

For all t ⩾ 0, we have

(Hn • X)t :=
∫ t

0
Hn

s dXs =
∑

ti∈Πn

Hti
(Xti+1∧t − Xti∧t).

By construction of Hn, we have Hn → H− pointwise. Also, since H− is left-
continuous and adapted, so is H∗

−, where H∗
t− := sup0⩽s⩽t |Hs−|. Thus H∗

− is
also locally bounded. Now we have |Hn − H−| ⩽ 2H∗

−, and so we can apply
Theorem 4.2.23 to get the result.

(c) Let (Ω, F , P ) be a probability space such that there exists a random variable
Z ∼ N (0, 1) which is F -measurable. Fix some u > 0 and consider the process
X = (Xt)t⩾0 given by

Xt := Z1[u,∞)(t).

Let F = FX be the filtration generated by the process X. By construction, X
is right-continuous and F-adapted. Suppose for contradiction that X is locally
bounded. Let (τn)n∈N be a sequence of stopping times such that τn ↑ ∞ P -a.s.
and Xτn is bounded. Since Xt ≡ 0 for t < u, we have that Ft is P -trivial for all
t < u. So for each t < u and n ∈ N, P [τn ⩽ t] ∈ {0, 1} since {τn ⩽ t} ∈ Ft as
τn is a stopping time. Now we can write {τn < u} = ⋃∞

m=1{τn ⩽ u − 1
m

}, and
so P [τn < u] = limm→∞ P [τn ⩽ u− 1

m
] ∈ {0, 1}. But as {0, 1} ∋ P [τn < u] → 0

as n → ∞, there exists N ∈ N such that for all n ⩾ N , P [τn < u] = 0. In
particular, we have P [τN < u] = 0, so that P [τN ⩾ u] = 1. Therefore, we
have that XτN

u = Xu = Z. But this implies that Z is bounded, which is a
contradiction as Z ∼ N (0, 1). This completes the proof.
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