Brownian Motion and Stochastic Calculus Exercise Sheet 8

Submit by 12:00 on Wednesday, April 16 via the course homepage.

Exercise 8.1 Suppose $M \in \mathcal{M}_{0,\text{loc}}$.

- (a) Show that if there exists an integrable random variable Z with $|M_t| \leq Z$ for all $t \geq 0$, then M is a uniformly integrable martingale.
- (b) Suppose in addition that M is continuous. Show that the sequence of stopping times $(\tau_n)_{n \in \mathbb{N}}$ defined by

$$\tau_n := \inf\{t \ge 0 : |M_t| \ge n\}$$

forms a localising sequence for M, and each τ_n is a stopping time for the (right-continuous and complete) filtration \mathbb{F}^M generated by M.

Exercise 8.2 Fix a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. For a filtration \mathbb{G} , we let $\mathcal{M}_{0,\text{loc}}^c(\mathbb{G})$ denote the space of continuous local \mathbb{G} -martingales null at zero. In all four parts below we assume the processes M and N are independent.

- (a) Suppose M and N be martingales with respect to their natural filtrations \mathbb{F}^M and \mathbb{F}^N , respectively. Show that MN is a martingale with respect to its natural filtration \mathbb{F}^{MN} .
- (b) Suppose $M, N \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F})$. Show that also $MN \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F})$.
- (c) Suppose $M \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^M)$ and $N \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^N)$. Show that $MN \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^{MN})$.
- (d) Suppose M and N are continuous \mathbb{F} -martingales. Show that MN is also an \mathbb{F} -martingale.

Remark: There is an example of a filtration \mathbb{F} and (not continuous) independent bounded \mathbb{F} -martingales M and N both null at zero such that MN is not a local \mathbb{F} -martingale.

Exercise 8.3 Let W be a Brownian motion with respect to its natural filtration. By using Itô's formula, show that the processes $M^{(1)}, M^{(2)}, M^{(3)}$ given by

$$M_t^{(1)} = e^{t/2} \cos W_t, \quad M_t^{(2)} = tW_t - \int_0^t W_u \,\mathrm{d}u, \quad M_t^{(3)} = W_t^3 - 3tW_t$$

Updated: April 9, 2025

1/2

are martingales.