Brownian Motion and Stochastic Calculus Exercise Sheet 8

Submit by 12:00 on Wednesday, April 16 via the course homepage.

Exercise 8.1 Suppose $M \in \mathcal{M}_{0,\text{loc}}$.

- (a) Show that if there exists an integrable random variable Z with $|M_t| \leq Z$ for all $t \geq 0$, then M is a uniformly integrable martingale.
- (b) Suppose in addition that M is continuous. Show that the sequence of stopping times $(\tau_n)_{n\in\mathbb{N}}$ defined by

$$\tau_n := \inf\{t \ge 0 : |M_t| \ge n\}$$

forms a localising sequence for M, and each τ_n is a stopping time for the (right-continuous and complete) filtration \mathbb{F}^M generated by M.

Solution 8.1

(a) First note that M is adapted because it is a local martingale, and it is integrable because it is dominated by the integrable random variable Z. Now let $(\tau_n)_{n \in \mathbb{N}}$ be a localising sequence for M. Fix $0 \leq s \leq t$ and write

$$E[M_{\tau_n \wedge t} \,|\, \mathcal{F}_s] = M_{\tau_n \wedge s}.$$

Since $M_{\tau_n \wedge s} \to M_s$ and $M_{\tau_n \wedge t} \to M_t$ *P*-a.s., the conditional dominated convergence theorem gives

$$E[M_t \,|\, \mathcal{F}_s] = M_s.$$

Thus M is a martingale. To see explicitly that it is uniformly integrable, we write

$$\lim_{K \to \infty} \sup_{t \ge 0} E[|M_t| \mathbf{1}_{\{|M_t| \ge K\}}] \leqslant \lim_{K \to \infty} E[Z \mathbf{1}_{\{Z \ge K\}}] = 0$$

by the dominated convergence theorem. This completes the proof.

(b) Since M is RCLL, we have $\tau_n \uparrow \infty P$ -a.s. It remains to show that for each $n \in \mathbb{N}$, the stopped process M^{τ_n} is a martingale. By the construction of τ_n and because M is continuous, we have $|M^{\tau_n}| \leq n$ so that M^{τ_n} is bounded. By Exercise 7.1(b), M^{τ_n} is a local martingale. So by part (a), we have that M^{τ_n} is a (uniformly integrable) martingale. Thus $(\tau_n)_{n \in \mathbb{N}}$ is a localising sequence for M. Since M is continuous, τ_n is an \mathbb{F}^M -stopping time. This completes the proof.

Updated: April 9, 2025

1 / 5

Exercise 8.2 Fix a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$. For a filtration \mathbb{G} , we let $\mathcal{M}_{0,\text{loc}}^c(\mathbb{G})$ denote the space of continuous local \mathbb{G} -martingales null at zero. In all four parts below we assume the processes M and N are independent.

- (a) Suppose M and N be martingales with respect to their natural filtrations \mathbb{F}^M and \mathbb{F}^N , respectively. Show that MN is a martingale with respect to its natural filtration \mathbb{F}^{MN} .
- (b) Suppose $M, N \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F})$. Show that also $MN \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F})$.
- (c) Suppose $M \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^M)$ and $N \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^N)$. Show that $MN \in \mathcal{M}_{0,\text{loc}}^c(\mathbb{F}^{MN})$.
- (d) Suppose M and N are continuous \mathbb{F} -martingales. Show that MN is also an \mathbb{F} -martingale.

Remark: There is an example of a filtration \mathbb{F} and (not continuous) independent bounded \mathbb{F} -martingales M and N both null at zero such that MN is not a local \mathbb{F} -martingale.

Solution 8.2 We follow many of the arguments in the paper *Some particular problems on martingale theory* by A.S. Cherny, which can be found online at http://alexanderchernyy.com/pmt.pdf.

In what follows, we define for each $n \in \mathbb{N}$ the random times τ_n and σ_n by

 $\tau_n := \inf\{t \ge 0 : |M_t| \ge n\} \quad \text{and} \quad \sigma_n := \inf\{t \ge 0 : |N_t| \ge n\}.$

(a) Clearly MN is \mathbb{F}^{MN} -adapted, and it is integrable because

$$E[|M_tN_t|] = E[|M_t|]E[|N_t|] < \infty$$

by independence. It remains to check the martingale property. So fix $0 \leq s \leq t$ and pick $A \in \mathcal{F}_s^M$ and $B \in \mathcal{F}_s^N$. We use independence, the martingale property of M and N and again independence to compute

$$E[M_t N_t \mathbf{1}_{A \cap B}] = E[M_t \mathbf{1}_A N_t \mathbf{1}_B]$$

= $E[M_t \mathbf{1}_A] E[N_t \mathbf{1}_B]$
= $E[M_s \mathbf{1}_A] E[N_s \mathbf{1}_B]$
= $E[M_s N_s \mathbf{1}_{A \cap B}].$

So setting $\mathcal{D} := \{A \cap B : A \in \mathcal{F}_s^M, B \in \mathcal{F}_s^N\}$, we have that

$$\mathcal{D} \subseteq \{ C \in \mathcal{F}_s^M \lor \mathcal{F}_s^N : E[M_t N_t \mathbf{1}_C] = E[M_s N_s \mathbf{1}_C] \} =: \mathcal{G}.$$

Note that \mathcal{D} is closed under finite intersections and contains Ω . Also, the dominated convergence theorem shows that \mathcal{G} is closed under increasing limits, and clearly \mathcal{G} is closed under differences (meaning that whenever $C, D \in \mathcal{G}$ with

Updated: April 9, 2025

2/5

 $C \subseteq D$, we have $D \setminus C \in \mathcal{G}$). It follows by the monotone class theorem for sets (see e.g. [Protter, Theorem 6.2]) that $\sigma(\mathcal{D}) \subseteq \mathcal{G}$. But we have $\sigma(\mathcal{D}) = \mathcal{F}_s^M \vee \mathcal{F}_s^N$, which means that

$$E[M_t N_t \,|\, \mathcal{F}_s^M \lor \mathcal{F}_s^N] = M_s N_s.$$

We have thus shown that MN is an $\mathbb{F}^M \vee \mathbb{F}^N$ -martingale. As $\mathbb{F}^{MN} \subseteq \mathbb{F}^M \vee \mathbb{F}^N$, it follows from the tower law that MN is also an \mathbb{F}^{MN} -martingale, as required.

(b) By Exercise 8.1(b) (which is applicable because M and N are continuous), $(\tau_n)_{n\in\mathbb{N}}$ and $(\sigma_n)_{n\in\mathbb{N}}$ are localising sequences for M and N, respectively, so that for each $n \in \mathbb{N}$, M^{τ_n} and N^{σ_n} are bounded \mathbb{F} -martingales. Moreover, since τ_n and σ_n are \mathbb{F}^{M_-} and \mathbb{F}^N -stopping times, respectively, it can be seen from the independence of M and N that M^{τ_n} and N^{σ_n} are also independent. So M^{τ_n} and N^{σ_n} are independent \mathbb{F} -martingales, and thus by the tower law they are also independent martingales with respect to their natural filtrations $\mathbb{F}^{M^{\tau_n}}$ and $\mathbb{F}^{N^{\sigma_n}}$, respectively. So by part (a), $M^{\tau_n}N^{\sigma_n}$ is an $\mathbb{F}^{M^{\tau_n}N^{\sigma_n}}$ -martingale. Also, $M^{\tau_n}N^{\sigma_n}$ is continuous because M and N are. We therefore have that $\langle M^{\tau_n}, N^{\sigma_n} \rangle \equiv 0$ when computed in $\mathbb{F}^{M^{\tau_n}N^{\sigma_n}}$. But as $\langle M^{\tau_n}, N^{\sigma_n} \rangle$ can be computed pathwise, we also have $\langle M^{\tau_n}, N^{\sigma_n} \rangle$ when computed in \mathbb{F} . We thus have

$$\langle M^{\tau_n}, N^{\sigma_n} \rangle = \langle M, N \rangle^{\tau_n \wedge \sigma_n} \equiv 0, \text{ for all } n \in \mathbb{N}.$$

As $\tau_n \wedge \sigma_n \uparrow \infty$ as $n \to \infty$, we have $\langle M, N \rangle \equiv 0$ in \mathbb{F} . It therefore follows that $MN \in \mathcal{M}^c_{0,\text{loc}}(\mathbb{F})$, as required.

- (c) Just as in part (b), we can see that M^{τ_n} and N^{σ_n} are independent $\mathbb{F}^{M^{\tau_n}}$ and $\mathbb{F}^{N^{\sigma_n}}$ -martingales, respectively. We then argue the same as part (b), but with \mathbb{F} replaced with \mathbb{F}^{MN} .
- (d) Assume first that $M_0 = N_0 = 0$. Then we have $M^{\tau_n}, N^{\sigma_n} \in \mathcal{M}^c_{0,\text{loc}}(\mathbb{F})$, and since M^{τ_n} and N^{σ_n} are independent (by the same reasoning as in part (b)), we can apply part (b) to get that $M^{\tau_n}N^{\sigma_n} \in \mathcal{M}^c_{0,\text{loc}}(\mathbb{F})$. As $M^{\tau_n}N^{\sigma_n}$ is also bounded by the construction of τ_n and σ_n , $M^{\tau_n}N^{\sigma_n}$ is a bounded \mathbb{F} -martingale. So fixing $0 \leq s \leq t$, we have

$$E[M_t^{\tau_n} N_t^{\sigma_n} \,|\, \mathcal{F}_s] = M_s^{\tau_n} N_s^{\sigma_n},$$

or equivalently,

$$E[M_t^{\tau_n} N_t^{\sigma_n} \mathbf{1}_A] = E[M_s^{\tau_n} N_s^{\sigma_n} \mathbf{1}_A], \quad \text{for all } A \in \mathcal{F}_s.$$
(1)

Now note that as $n \to \infty$, $M_t^{\tau_n} \to M_t$ *P*-a.s. By the stopping theorem, we have $M_t^{\tau_n} = E[M_t | \mathcal{F}_{\tau_n \wedge t}]$, and thus the family $(M_t^{\tau_n})_{n \in \mathbb{N}}$ is uniformly integrable. Therefore we also have that $M_t^{\tau_n} \to M_t$ in $L^1(\Omega)$. Similarly we have $N_t^{\tau_n} \to N_t$ in $L^1(\Omega)$. We now write, using independence of M and N,

$$\begin{split} E[|M_t^{\tau_n} N_t^{\sigma_n} - M_t N_t|] &\leq E[|M_t^{\tau_n}| |N_t^{\sigma_n} - N_t|] + E[|M_t^{\tau_n} - M_t| |N_t|] \\ &= E[|M_t^{\tau_n}|] \|N_t^{\sigma_n} - N_t\|_{L^1(\Omega)} + \|M_t^{\tau_n} - M_t\|_{L^1(\Omega)} E[|N_t|] \\ &\leq C \|N_t^{\sigma_n} - N_t\|_{L^1(\Omega)} + \|M_t^{\tau_n} - M_t\|_{L^1(\Omega)} E[|N_t|], \end{split}$$

Updated: April 9, 2025

3 / 5

where in the last step we set $C := \sup_{n \in \mathbb{N}} E[|M_t^{\tau_n}]$, which we know is finite as $(M_t^{\tau_n})_{n \in \mathbb{N}}$ is uniformly integrable. We have thus shown that $M_t^{\tau_n} N_t^{\sigma_n} \to M_t N_t$ in $L^1(\Omega)$. Similarly we also have $M_s^{\tau_n} N_s^{\sigma_n} \to M_s N_s$ in $L^1(\Omega)$. So for fixed $A \in \mathcal{F}_s$, we also have $M_t^{\tau_n} N_t^{\sigma_n} \mathbf{1}_A \to M_t N_t \mathbf{1}_A$ and $M_s^{\tau_n} N_s^{\sigma_n} \mathbf{1}_A \to M_s N_s \mathbf{1}_A$ in $L^1(\Omega)$. Thus we may take the limit as $n \to \infty$ in (1) to get

$$E[M_t N_t \mathbf{1}_A] = E[M_s N_s \mathbf{1}_A], \text{ for all } A \in \mathcal{F}_s,$$

so that $E[M_tN_t | \mathcal{F}_s] = M_sN_s$. As $0 \leq s \leq t$ were chosen arbitrarily, we have thus shown that MN is an \mathbb{F} -martingale.

Finally, for the general case when M_0 and N_0 are not necessarily 0, we define the \mathbb{F} -martingales \widetilde{M} and \widetilde{N} by $\widetilde{M}_t := M_t - M_0$ and $\widetilde{N}_t := N_t - N_0$. Then we write

$$M_t N_t = M_0 N_0 + M_0 \widetilde{N}_t + \widetilde{M}_t N_0 + \widetilde{M}_t \widetilde{N}_t.$$
⁽²⁾

From above we know that \widetilde{MN} is an \mathbb{F} -martingale, and so from (2) it can be easily seen that MN is also an \mathbb{F} -martingale, completing the proof.

Exercise 8.3 Let W be a Brownian motion with respect to its natural filtration. By using Itô's formula, show that the processes $M^{(1)}, M^{(2)}, M^{(3)}$ given by

$$M_t^{(1)} = e^{t/2} \cos W_t, \quad M_t^{(2)} = tW_t - \int_0^t W_u \,\mathrm{d}u, \quad M_t^{(3)} = W_t^3 - 3tW_t$$

are martingales.

Solution 8.3 We can express $M^{(1)}, M^{(2)}, M^{(3)}$ in the form

$$M_t^{(1)} = f^{(1)}(t, W_t), \quad M_t^{(2)} = f^{(2)}\left(t, W_t, \int_0^t W_u \,\mathrm{d}u\right), \quad M_t^{(3)} = f^{(3)}(t, W_t),$$

where

$$f^{(1)}(t,w) = e^{t/2}\cos w, \quad f^{(2)}(t,w,x) = tw - x, \quad f^{(3)}(t,w) = w^3 - 3tw$$

are C^2 functions. We note that the processes I and X defined by $I_t = t$ and $X_t = \int_0^t W_u \, du$, respectively, are continuous and have finite variation, while $\langle W \rangle_t = t$. Therefore we have by Itô's formula that

$$\begin{split} M_t^{(1)} &= M_0^{(1)} + \int_0^t \frac{\partial f^{(1)}}{\partial t}(s, W_s) \,\mathrm{d}s + \int_0^t \frac{\partial f^{(1)}}{\partial w}(s, W_s) \,\mathrm{d}W_s + \frac{1}{2} \int_0^t \frac{\partial^2 f^{(1)}}{\partial w^2}(s, W_s) \,\mathrm{d}s \\ &= 1 + \frac{1}{2} \int_0^t e^{s/2} \cos W_s \,\mathrm{d}s - \int_0^t e^{s/2} \sin W_s \,\mathrm{d}W_s - \frac{1}{2} \int_0^t e^{s/2} \cos W_s \,\mathrm{d}s \\ &= 1 - \int_0^t e^{s/2} \sin W_s \,\mathrm{d}W_s, \end{split}$$

Updated: April 9, 2025

$$\begin{split} M_t^{(2)} &= M_0^{(2)} + \int_0^t \frac{\partial f^{(2)}}{\partial t} (s, W_s, X_s) \, \mathrm{d}s + \int_0^t \frac{\partial f^{(2)}}{\partial w} (s, W_s, X_s) \, \mathrm{d}W_s \\ &+ \int_0^t \frac{\partial f^{(2)}}{\partial x} (s, W_s, X_s) \, \mathrm{d}X_s + \frac{1}{2} \int_0^t \frac{\partial^2 f^{(2)}}{\partial w^2} (s, W_s, X_s) \, \mathrm{d}s \\ &= \int_0^t W_s \, \mathrm{d}s + \int_0^t s \, \mathrm{d}W_s - X_t \\ &= \int_0^t s \, \mathrm{d}W_s, \end{split}$$
$$\begin{aligned} M_t^{(3)} &= M_0^{(3)} + \int_0^t \frac{\partial f^{(3)}}{\partial t} (s, W_s) \, \mathrm{d}s + \int_0^t \frac{\partial f^{(3)}}{\partial w} (s, W_s) \, \mathrm{d}W_s + \frac{1}{2} \int_0^t \frac{\partial^2 f^{(3)}}{\partial w^2} (s, W_s) \, \mathrm{d}s \\ &= -3 \int_0^t W_s \, \mathrm{d}s + \int_0^t (3W_s^2 - 3s) \, \mathrm{d}W_s + 3 \int_0^t W_s \, \mathrm{d}s \\ &= \int_0^t (3W_s^2 - 3s) \, \mathrm{d}W_s. \end{split}$$

Since the integrands are continuous, hence locally bounded, we immediately get that $M^{(1)}, M^{(2)}, M^{(3)}$ are local martingales. To show that they are martingales, remember that $W_t^* \stackrel{\text{(d)}}{=} |W_t|$. Since all moments of the Gaussian distribution are finite, the same is true of W_t^* . Therefore,

$$\begin{split} E\left[\int_0^T e^s (\sin W_s)^2 \,\mathrm{d}\langle W \rangle_s\right] &= E\left[\int_0^T e^s (\sin W_s)^2 \,\mathrm{d}s\right] \leqslant \int_0^T e^s \,\mathrm{d}s = e^T - 1 < \infty, \\ E\left[\int_0^T s^2 \,\mathrm{d}\langle W \rangle_s\right] &= \int_0^T s^2 \,\mathrm{d}s = T^3/3 < \infty, \\ E\left[\int_0^T (3W_s^2 - 3s)^2 \,\mathrm{d}\langle W \rangle_s\right] &= E\left[\int_0^T (3W_s^2 - 3s)^2 \,\mathrm{d}s\right] \leqslant TE[(3(W_T^*)^2 + 3T)^2] < \infty, \end{split}$$

which shows that $(M^{(1)})^T, (M^{(2)})^T, (M^{(3)})^T \in \mathcal{H}^{2,c}$ for any T > 0. In particular, $M^{(1)}, M^{(2)}$ and $M^{(3)}$ are martingales, as required.

Updated: April 9, 2025