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Exercise 8.1 Suppose M ∈ M0,loc.

(a) Show that if there exists an integrable random variable Z with |Mt| ⩽ Z for
all t ⩾ 0, then M is a uniformly integrable martingale.

(b) Suppose in addition that M is continuous. Show that the sequence of stopping
times (τn)n∈N defined by

τn := inf{t ⩾ 0 : |Mt| ⩾ n}

forms a localising sequence for M , and each τn is a stopping time for the
(right-continuous and complete) filtration FM generated by M .

Solution 8.1

(a) First note that M is adapted because it is a local martingale, and it is integrable
because it is dominated by the integrable random variable Z. Now let (τn)n∈N
be a localising sequence for M . Fix 0 ⩽ s ⩽ t and write

E[Mτn∧t | Fs] = Mτn∧s.

Since Mτn∧s → Ms and Mτn∧t → Mt P -a.s., the conditional dominated conver-
gence theorem gives

E[Mt | Fs] = Ms.

Thus M is a martingale. To see explicitly that it is uniformly integrable, we
write

lim
K→∞

sup
t⩾0

E[|Mt|1{|Mt|⩾K}] ⩽ lim
K→∞

E[Z1{Z⩾K}] = 0

by the dominated convergence theorem. This completes the proof.

(b) Since M is RCLL, we have τn ↑ ∞ P -a.s. It remains to show that for each
n ∈ N, the stopped process M τn is a martingale. By the construction of τn

and because M is continuous, we have |M τn| ⩽ n so that M τn is bounded. By
Exercise 7.1(b), M τn is a local martingale. So by part (a), we have that M τn

is a (uniformly integrable) martingale. Thus (τn)n∈N is a localising sequence
for M . Since M is continuous, τn is an FM -stopping time. This completes the
proof.
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Exercise 8.2 Fix a filtration F = (Ft)t⩾0. For a filtration G, we let Mc
0,loc(G)

denote the space of continuous local G-martingales null at zero. In all four parts
below we assume the processes M and N are independent.

(a) Suppose M and N be martingales with respect to their natural filtrations FM

and FN , respectively. Show that MN is a martingale with respect to its natural
filtration FMN .

(b) Suppose M, N ∈ Mc
0,loc(F). Show that also MN ∈ Mc

0,loc(F).

(c) Suppose M ∈ Mc
0,loc(FM ) and N ∈ Mc

0,loc(FN ). Show that MN ∈ Mc
0,loc(FMN ).

(d) Suppose M and N are continuous F-martingales. Show that MN is also an
F-martingale.

Remark: There is an example of a filtration F and (not continuous) independent
bounded F-martingales M and N both null at zero such that MN is not a local
F-martingale.

Solution 8.2 We follow many of the arguments in the paper Some particular
problems on martingale theory by A.S. Cherny, which can be found online at
http://alexanderchernyy.com/pmt.pdf.

In what follows, we define for each n ∈ N the random times τn and σn by

τn := inf{t ⩾ 0 : |Mt| ⩾ n} and σn := inf{t ⩾ 0 : |Nt| ⩾ n}.

(a) Clearly MN is FMN -adapted, and it is integrable because

E[|MtNt|] = E[|Mt|]E[|Nt|] < ∞

by independence. It remains to check the martingale property. So fix 0 ⩽ s ⩽ t
and pick A ∈ FM

s and B ∈ FN
s . We use independence, the martingale property

of M and N and again independence to compute

E[MtNt1A∩B] = E[Mt1ANt1B]
= E[Mt1A]E[Nt1B]
= E[Ms1A]E[Ns1B]
= E[MsNs1A∩B].

So setting D := {A ∩ B : A ∈ FM
s , B ∈ FN

s }, we have that

D ⊆ {C ∈ FM
s ∨ FN

s : E[MtNt1C ] = E[MsNs1C ]} =: G.

Note that D is closed under finite intersections and contains Ω. Also, the
dominated convergence theorem shows that G is closed under increasing limits,
and clearly G is closed under differences (meaning that whenever C, D ∈ G with

Updated: April 9, 2025 2 / 5



Brownian Motion and Stochastic Calculus, Spring 2025 Exercise Sheet 8

C ⊆ D, we have D\C ∈ G). It follows by the monotone class theorem for sets
(see e.g. [Protter, Theorem 6.2]) that σ(D) ⊆ G. But we have σ(D) = FM

s ∨FN
s ,

which means that
E[MtNt | FM

s ∨ FN
s ] = MsNs.

We have thus shown that MN is an FM ∨FN -martingale. As FMN ⊆ FM ∨FN ,
it follows from the tower law that MN is also an FMN -martingale, as required.

(b) By Exercise 8.1(b) (which is applicable because M and N are continuous),
(τn)n∈N and (σn)n∈N are localising sequences for M and N , respectively, so that
for each n ∈ N, M τn and Nσn are bounded F-martingales. Moreover, since τn

and σn are FM - and FN -stopping times, respectively, it can be seen from the
independence of M and N that M τn and Nσn are also independent. So M τn and
Nσn are independent F-martingales, and thus by the tower law they are also
independent martingales with respect to their natural filtrations FMτn and FNσn ,
respectively. So by part (a), M τnNσn is an FMτn Nσn -martingale. Also, M τnNσn

is continuous because M and N are. We therefore have that ⟨M τn , Nσn⟩ ≡ 0
when computed in FMτn Nσn . But as ⟨M τn , Nσn⟩ can be computed pathwise,
we also have ⟨M τn , Nσn⟩ when computed in F. We thus have

⟨M τn , Nσn⟩ = ⟨M, N⟩τn∧σn ≡ 0, for all n ∈ N.

As τn ∧ σn ↑ ∞ as n → ∞, we have ⟨M, N⟩ ≡ 0 in F. It therefore follows that
MN ∈ Mc

0,loc(F), as required.

(c) Just as in part (b), we can see that M τn and Nσn are independent FMτn - and
FNσn -martingales, respectively. We then argue the same as part (b), but with
F replaced with FMN .

(d) Assume first that M0 = N0 = 0. Then we have M τn , Nσn ∈ Mc
0,loc(F), and

since M τn and Nσn are independent (by the same reasoning as in part (b)),
we can apply part (b) to get that M τnNσn ∈ Mc

0,loc(F). As M τnNσn is also
bounded by the construction of τn and σn, M τnNσn is a bounded F-martingale.
So fixing 0 ⩽ s ⩽ t, we have

E[M τn
t Nσn

t | Fs] = M τn
s Nσn

s ,

or equivalently,

E[M τn
t Nσn

t 1A] = E[M τn
s Nσn

s 1A], for all A ∈ Fs. (1)

Now note that as n → ∞, M τn
t → Mt P -a.s. By the stopping theorem, we have

M τn
t = E[Mt | Fτn∧t], and thus the family (M τn

t )n∈N is uniformly integrable.
Therefore we also have that M τn

t → Mt in L1(Ω). Similarly we have N τn
t → Nt

in L1(Ω). We now write, using independence of M and N ,

E[|M τn
t Nσn

t − MtNt|] ⩽ E[|M τn
t ||Nσn

t − Nt|] + E[|M τn
t − Mt||Nt|]

= E[|M τn
t |]∥Nσn

t − Nt∥L1(Ω) + ∥M τn
t − Mt∥L1(Ω)E[|Nt|]

⩽ C∥Nσn
t − Nt∥L1(Ω) + ∥M τn

t − Mt∥L1(Ω)E[|Nt|],
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where in the last step we set C := supn∈N E[|M τn
t ], which we know is finite as

(M τn
t )n∈N is uniformly integrable. We have thus shown that M τn

t Nσn
t → MtNt

in L1(Ω). Similarly we also have M τn
s Nσn

s → MsNs in L1(Ω). So for fixed
A ∈ Fs, we also have M τn

t Nσn
t 1A → MtNt1A and M τn

s Nσn
s 1A → MsNs1A in

L1(Ω). Thus we may take the limit as n → ∞ in (1) to get

E[MtNt1A] = E[MsNs1A], for all A ∈ Fs,

so that E[MtNt | Fs] = MsNs. As 0 ⩽ s ⩽ t were chosen arbitrarily, we have
thus shown that MN is an F-martingale.

Finally, for the general case when M0 and N0 are not necessarily 0, we define
the F-martingales M̃ and Ñ by M̃t := Mt − M0 and Ñt := Nt − N0. Then we
write

MtNt = M0N0 + M0Ñt + M̃tN0 + M̃tÑt. (2)
From above we know that M̃Ñ is an F-martingale, and so from (2) it can be
easily seen that MN is also an F-martingale, completing the proof.

Exercise 8.3 Let W be a Brownian motion with respect to its natural filtration.
By using Itô’s formula, show that the processes M (1), M (2), M (3) given by

M
(1)
t = et/2 cos Wt, M

(2)
t = tWt −

∫ t

0
Wu du, M

(3)
t = W 3

t − 3tWt

are martingales.

Solution 8.3 We can express M (1), M (2), M (3) in the form

M
(1)
t = f (1)(t, Wt), M

(2)
t = f (2)

(
t, Wt,

∫ t

0
Wu du

)
, M

(3)
t = f (3)(t, Wt),

where

f (1)(t, w) = et/2 cos w, f (2)(t, w, x) = tw − x, f (3)(t, w) = w3 − 3tw

are C2 functions. We note that the processes I and X defined by It = t and
Xt =

∫ t
0 Wu du, respectively, are continuous and have finite variation, while ⟨W ⟩t = t.

Therefore we have by Itô’s formula that

M
(1)
t = M

(1)
0 +

∫ t

0

∂f (1)

∂t
(s, Ws) ds +

∫ t

0

∂f (1)

∂w
(s, Ws) dWs + 1

2

∫ t

0

∂2f (1)

∂w2 (s, Ws) ds

= 1 + 1
2

∫ t

0
es/2 cos Ws ds −

∫ t

0
es/2 sin Ws dWs − 1

2

∫ t

0
es/2 cos Ws ds

= 1 −
∫ t

0
es/2 sin Ws dWs,
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M
(2)
t = M

(2)
0 +

∫ t

0

∂f (2)

∂t
(s, Ws, Xs) ds +

∫ t

0

∂f (2)

∂w
(s, Ws, Xs) dWs

+
∫ t

0

∂f (2)

∂x
(s, Ws, Xs) dXs + 1

2

∫ t

0

∂2f (2)

∂w2 (s, Ws, Xs) ds

=
∫ t

0
Ws ds +

∫ t

0
s dWs − Xt

=
∫ t

0
s dWs,

M
(3)
t = M

(3)
0 +

∫ t

0

∂f (3)

∂t
(s, Ws) ds +

∫ t

0

∂f (3)

∂w
(s, Ws) dWs + 1

2

∫ t

0

∂2f (3)

∂w2 (s, Ws) ds

= −3
∫ t

0
Ws ds +

∫ t

0
(3W 2

s − 3s) dWs + 3
∫ t

0
Ws ds

=
∫ t

0
(3W 2

s − 3s) dWs.

Since the integrands are continuous, hence locally bounded, we immediately get that
M (1), M (2), M (3) are local martingales. To show that they are martingales, remember
that W ∗

t

(d)= |Wt|. Since all moments of the Gaussian distribution are finite, the same
is true of W ∗

t . Therefore,

E

[∫ T

0
es(sin Ws)2 d⟨W ⟩s

]
= E

[∫ T

0
es(sin Ws)2 ds

]
⩽

∫ T

0
es ds = eT − 1 < ∞,

E

[∫ T

0
s2 d⟨W ⟩s

]
=

∫ T

0
s2 ds = T 3/3 < ∞,

E

[∫ T

0
(3W 2

s − 3s)2 d⟨W ⟩s

]
= E

[∫ T

0
(3W 2

s − 3s)2 ds

]
⩽ TE[(3(W ∗

T )2 + 3T )2] < ∞,

which shows that (M (1))T , (M (2))T , (M (3))T ∈ H2,c for any T > 0. In particular,
M (1), M (2) and M (3) are martingales, as required.
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