Brownian Motion and Stochastic Calculus Exercise Sheet 9

Submit by 12:00 on Wednesday, April 30 via the course homepage.

Exercise 9.1 Let W be a Brownian motion in \mathbb{R} and $\mu \neq 0$ a constant. Define the processes $X^1 = W$ and $X_t^2 = W_t + \mu t$, $t \ge 0$, and let P and Q denote the laws on $C[0,\infty)$ of X^1 and X^2 , respectively. Prove that $P \perp Q$, meaning that P and Q are mutually singular. Conclude that $Q \not\ll P$ and $Q \not\approx P$. Show however that $Q \stackrel{\text{loc}}{\approx} P$, and write out explicitly $\frac{\mathrm{d}Q|_{F_t}}{\mathrm{d}P|_{F_t}}$.

Exercise 9.2 Let $B = (B^1, \ldots, B^n)$ be a Brownian motion in \mathbb{R}^n starting at $y \neq 0$, where $n \ge 2$, and set X := |B|. The process X is called the *Bessel process of order* n.

(a) Show that there exists some Brownian motion W (not necessarily with respect to the same filtration as for B) such that

$$\mathrm{d}X_t = \mathrm{d}W_t + \frac{n-1}{2X_t}\,\mathrm{d}t.$$

Hint: You may use that $P[B_t \neq 0 \text{ for all } t \ge 0] = 1$.

Remark: By using mollifiers, one may show the same result when y = 0.

(b) Define the process $\overline{X} = |B|^2$. Show that for the same Brownian motion W as in part (a), we have

$$\mathrm{d}\overline{X}_t = 2\sqrt{\overline{X}_t}\,\mathrm{d}W_t + n\,\mathrm{d}t.$$

Exercise 9.3 Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a filtered probability space satisfying the usual conditions.

(a) Let W, \widetilde{W} be two (P, \mathbb{F}) -Brownian motions. Show that $d\langle W, \widetilde{W} \rangle_t = \rho_t dt$ for some predictable process ρ taking values in [-1, 1].

Hint: Use the Kunita-Watanabe decomposition.

(b) The filtration \mathbb{F} is called *P*-continuous if all local (P, \mathbb{F}) -martingales are continuous. Show that \mathbb{F} is *P*-continuous if and only if \mathbb{F} is *Q*-continuous for all $Q \approx P$.

Updated: April 15, 2025

(c) Assume \mathbb{F} is *P*-continuous and $Q \approx P$. Show that each local (Q, \mathbb{F}) -martingale $S = (S_t)_{t \ge 0}$ is of the form

$$S_t = S_0 + M_t + \int_0^t \alpha_s \, \mathrm{d}\langle M \rangle_s \quad \text{with } \alpha \in L^2_{\mathrm{loc}}(M) \tag{1}$$

for some $M \in \mathcal{M}^c_{0,\mathrm{loc}}(P)$.

Hint: Use Girsanov's theorem to find a semimartingale decomposition for S under P. Then use the Kunita–Watanabe decomposition under P to describe its finite variation part.

Remark: If S has the form (2), one says that it satisfies the structure condition. This is a useful concept in mathematical finance.

Exercise 9.4 Let $B = (B^1, B^2, B^3)$ be a Brownian motion in \mathbb{R}^3 and fix a standard normal random variable $Z = (Z^1, Z^2, Z^3)$ independent of B. Define the process $M = (M_t)_{t \ge 0}$ by

$$M_t = \frac{1}{|Z + B_t|}$$

(a) Show that $P[B_t \neq -Z \text{ for all } t \ge 0] = 1$ so that M is a.s. well defined.

Hint: You may use that $P[B_t \neq x \text{ for all } t \ge 0] = 1$ for any $x \in \mathbb{R}^3 \setminus \{0\}$.

(b) Show that $|Z + B_t|^2 \sim \text{Gamma}(\frac{3}{2}, \frac{1}{2(t+1)})$ for each t > 0, i.e., its density is given by

$$f_t(y) = \frac{(2(t+1))^{-3/2} y^{1/2}}{\Gamma(3/2)} \exp\left(-\frac{y}{2(t+1)}\right), \quad y \ge 0.$$

Hint: Recall that when $Y_1, \ldots, Y_n \sim Gamma(\alpha, \beta)$ are independent, we have $Y_1 + \cdots + Y_n \sim Gamma(n\alpha, \beta)$.

- (c) Show that M is a continuous local martingale. Moreover, show that M is bounded in L^2 , i.e., $\sup_{t\geq 0} E[|M_t|^2] < \infty$.
- (d) Show that M is a strict local martingale, i.e., M is not a martingale.

Remark: This is a standard example of a local martingale which is not a (true) martingale. It also shows that even boundedness in L^2 (which implies uniform integrability) does not guarantee the martingale property.

Exercise 9.5 Consider a probability space (Ω, \mathcal{F}, P) supporting a Brownian motion $W = (W_t)_{t \ge 0}$. Denote by $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ the *P*-augmentation of the raw filtration generated by *W*. Moreover, fix T > 0, a < b, and let $F := \mathbf{1}_{\{a \le W_T \le b\}}$. The aim of this exercise is to find explicitly the integrand $H \in L^2_{\text{loc}}(W)$ in the Itô representation

$$F = E[F] + \int_0^T H_s \,\mathrm{d}W_s. \tag{*}$$

Updated: April 15, 2025

(a) Define the martingale $M = (M_t)_{0 \leq t \leq T}$ by $M_t := E[F | \mathcal{F}_t]$. Show that there exists a C^2 -function $g : \mathbb{R} \times [0, T) \to \mathbb{R}$ such that

$$M_t = g(W_t, t), \quad 0 \le t < T,$$

Compute g explicitly in terms of the distribution function Φ of the standard normal distribution.

(b) Let $(t_n)_{n \in \mathbb{N}}$ be a sequence of nonnegative reals with $t_n \uparrow T$. Use Itô's formula to find for each $n \in \mathbb{N}$ a predictable process H^n such that

$$M^{t_n} - M_0 = H^n \bullet W.$$

(c) Find the process $H \in L^2_{loc}(W)$ on [0,T] satisfying (*).