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Exercise 9.1 Let W be a Brownian motion in R and p # 0 a constant. Define the
processes X' =W and X? = W, + ut, t > 0, and let P and @ denote the laws on
C|[0,00) of X! and X2, respectively. Prove that P L @, meaning that P and Q are

loc

mutually singular. Conclude that Q €« P and @ % P. Show however that Q) = P,

Q|]—'t
dP|F,

and write out explicitly
Solution 9.1 Define the set A C C[0, 00) by

t—oo

A= {:c € C[0,00) : lim o) _ 0}.

We know from the lecture notes that almost surely,

lim — =0
t—oo
and therefore almost surely,
X X
fim == =0 and  lim —% = 7#0.

It follows that P[A] = 1 and Q[A°] = 1, so that P L Q. It follows that Q <« P,
and thus also @ % P, since P[A°] = 0 but Q[A‘] = 1 # 0. However, we do have

that @ X p. Indeed, fix t > 0 and define the process b = —pu € L2 (W). We set
Z =E([bydW,) = E(—puW) = (exp(—puW; — $14%5))o<s<: and define the probability

measure Q" on F; by
dQOI}—t

dP']‘—t =% (1)
As Z >0 P-as., we have Q° =~ P on F;. By Theorem 4.10, W is under Q° on [0, ]
a Brownian motion with drift —u, i.e. W, = W, — - ps for 0 < s < ¢ for some Q°-
Brownian motion W on [0, ¢]. But rearranging gives W, = W, +pus = X?2. So on [0, 1],
X? has under Q and under A° the same distribution, and so P|z, ~ Q |7 = Qlx.
As t was arbitrary, this shows that Q ~ P with

dQ|]:t
dPl]:t

- Zt.
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Note, however, that Q° = Q%' as defined in (1) is an entire family of measures
depending on t; this family is consistent, but its Kolmogorov extension to F, is
not equivalent to P on F,. Indeed, limHoo%log Zy = —%/ﬂ < 0 implies that
lim;_,oo Z; = 0.

Exercise 9.2 Let B = (B!,..., B") be a Brownian motion in R" starting at y # 0,
where n > 2, and set X := |B|. The process X is called the Bessel process of order
n.

(a) Show that there exists some Brownian motion W (not necessarily with respect
to the same filtration as for B) such that

n—1

dt.
2X,

dX; =dW; +

Hint: You may use that P[B; # 0 for allt > 0] = 1.
Remark: By using mollifiers, one may show the same result when y = 0.

(b) Define the process X = |B|?. Show that for the same Brownian motion W as
in part (a), we have

dyt = 2\/ Yt th + ndt.

Solution 9.2

(a) Consider the C?-function f : R™\{0} — (0,00) given by f(z) := |z|. By the
hint, we can write X = f(B) P-a.s. Applying Itd’s formula then gives

n—1 t 1
X, = / Sd’ d
; |y|+iz B 5 b 1B s

Indeed, this can be seen by writing f(z1,...,2,) = (X7, 22)2 and computing
1
af (&, 2 T
st =5 (£47) Tan =
and .
CAP I v N el . U S
L e e N P N P P
so that
82f no Yl n-1

TlyeoyXpy) = — —

=1

Setting W, = ¥, (f ‘g“ dB, it remains to show that W = (W) is a

Brownian motion. By construction, W is a continuous local martingale null at
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zero. Moreover, as (B', BY), = §; jt, we get that

z/w

We may therefore conclude by Lévy’s characterisation of Brownian motion that
W is a Brownian motion, as required.

Alternatively, we can argue as follows. We know from the lecture notes that
dX, = 2¢/ X, dW, + ndt. So Itd’s formula with f(z) = /T = x2 gives for
X = f(X) that
l— 1 — 1 - 35 —
dXt = i(Xt) 2 dXt — §<Xt) 2 d<X>t
1 L3, y2
-1
= dW,
o+ 2X,

dt,

as required.
(b) Applying It&’s formula to X = g(X), where g(z) = 22, gives us
dyt - 2Xt dXt + d<X>t

From part (a), we know that dX, = dW, + 5% dt and therefore d(X), = dt.
We thus obtain

Writing X; = \/ X, then gives the result.

Exercise 9.3 Let (Q, F,F = (F;)i=0, P) be a filtered probability space satisfying
the usual conditions.

(a) Let W, W be two (P,F)-Brownian motions. Show that d(W, W), = p; dt for

some predictable process p taking values in [—1,1].
Hint: Use the Kunita—Watanabe decomposition.

(b) The filtration I is called P-continuous if all local (P,F)-martingales are con-
tinuous. Show that [ is P-continuous if and only if F is )-continuous for all

Q~ P.
(¢) Assume I is P-continuous and @ ~ P. Show that each local (@, F)-martingale
S = (S¢)i=0 is of the form
t
Sy = Sy + M, + / a, d(M),  with o € L2 (M) 2)
0
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for some M € MG,..(P).

Hint: Use Girsanov’s theorem to find a semimartingale decomposition for S
under P. Then use the Kunita—Watanabe decomposition under P to describe
its finite variation part.

Remark: If S has the form (2), one says that it satisfies the structure condition.
This is a useful concept in mathematical finance.

Solution 9.3

(a)

Using the Kunita-Watanabe decomposition, we can write W = p e W + N for

some predictable integrand p € L, (W) and some local martingale N € Mg,

strongly orthogonal to W. Then by orthogonality and associativity of the
stochastic integral, we have

— — — t _ . t
(W)= (po W+ N} = [ p.d(W),+ (N Wy = [ pods, >0

It remains to show that p takes values in [—1, 1]. To this end, we first write for
eacht >0

N t t ~
<p.W+N>t=/0p§ds+2/0 ps (W, N)s + (N),
¢
:/Opgds—l-<N>t,

where in the last line we use that W and N are strongly orthogonal. We
therefore have

/Otds:t: (WY, = (poW+N}t:/0tp§ds+<N>t,

and hence .
| = pds = (.

In particular, the process t + [i(1 — p?)ds is increasing, implying that p? < 1
dt ® P-a.e., as required.

We only need to show the implication “=-", as “«<=" is trivial by taking @) = P.
So fix Q ~ P and let Z9 = (ZtQ)@O be the density process of () with respect
to P. Since Z9 is a (P, F)-martingale, Z9 is continuous. Since Q ~ P, we
have that ZtQ > (0 P-a.s. and Q-a.s. for each t > 0 a.s. Therefore, 1/Z9 is also
continuous.

Now let X be a local (@, F)-martingale. Then Z9X is a local (P, F)-martingale
and thus continuous P-a.s. Therefore, X = Z%(ZQX ) is continuous P-a.s. As
@ ~ P, we have that X is also continuous (J-a.s. Since X is an arbitrary local
(@, F)-martingale, we have shown that [ is Q-continuous, completing the proof.
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(c) Let ZF@ be the density process of P with respect to Q. Note that ZéD;Q =1,
and moreover Z9 is strictly positive and continuous by part (b). Therefore,
we can write 279 = £(L) for L € M§,,.(Q) defined by L = 5 @ Zp.

Since S'is a continuous local ()-martingale, we obtain by Girsanov’s theorem
that the process M given by

MZ:S—SO—<L,S—S()>

is a continuous local P-martingale. Rewriting, we get the P-semimartingale
decomposition

S=So+ M+ (LS~ S
It thus only remains to show that (L, S—Sy) = [ ad(M) for some o € Li, .(M).

loc
Since L € M§,.,.(Q), Girsanov’s theorem gives L := L — (L) € M§,.(P).
Applying the Kunita-Watanabe decomposition to L with respect to M, we
obtain that L = [adM + N for some a € L (M) and some N € MG, .(P)

loc

with N L M. Since M — (S — S;) and L — L are continuous finite variation
processes, their quadratic covariation is 0. Therefore,

(LS — Sp) = (L, M) = </adM+N,M> = [aa(m,

which completes the proof.

Exercise 9.4 Let B = (B!, B, B?) be a Brownian motion in R? and fix a standard
normal random variable Z = (Z', Z% Z3) independent of B. Define the process
M = (M;)i=0 by ]
M= ——
" Z+ By
(a) Show that P[B; # —Z for all t > 0] = 1 so that M is a.s. well defined.

Hint: You may use that P[B; # x for allt > 0] =1 for any x € R3\ {0}.

(b) Show that |Z + By|? ~ Gamma(2, 5-2—) for each t > 0, i.e., its density is given

27 2(t+1)
by /291/
_ @+ )y y

Hint: Recall that when Yy, ...,Y, ~ Gamma(a, ) are independent, we have
Yi+ -+ Y, ~ Gamma(na, 5).

(¢) Show that M is a continuous local martingale. Moreover, show that M is
bounded in L?, i.e., sup, E[|M;]?*] < oc.
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(d) Show that M is a strict local martingale, i.e., M is not a martingale.

Remark: This is a standard example of a local martingale which is not a (true)
martingale. It also shows that even boundedness in L* (which implies uniform
integrability) does not guarantee the martingale property.

Solution 9.4
(a) By independence of B and Z, we have that

P[B, # —Z for all t > 0] = E|P[B, # —x for all t > 0]|,—z

> E[l{z.0)]
= P[Z # 0]
=1,

as required.

(b) We first find the density function f, of [Z' + B}[2. As Z' + B} ~ N(0,t + 1)
by independence, we have for each y > 0 that

v 1 P
P[|Z' + B}|* <y] = / ——————¢ 2D dz.
V¥ 27(t + 1)

e 2(t+1) dZ

[

Changing variables to u = 22, we find that

Pl|Z'+ B/’ <y

Differentiating in y, we get that
—1/2

) y e o~
fily) = P @D = (2(t + 1))1/2T(1/2) @

Therefore, |Z' + B}|* ~ Gamma(
75+ BIP.

Now since Z' + B*, Z? + B?, Z* 4+ B? are independent and ~ Gamma(3, ﬁ),
we have by the hint that

%7 Q(tlﬂ)), and similarly for |Z? + B?|*> and

3 1
7 B 2: Zl B12 Z2 B22 Z3 B32NG
24 B = 124 B 127+ B 120+ B~ Gamma (3,

as required.
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(c) By part (a), the process Z + B = (Z + By)i>o takes values in the open set
D := R3\ {0} P-a.s. So we can apply Itd’s formula to M, = f(B;) with
f:D — (0,00) given by f(y) :=

\yl

For v =1, 2,3, we have

oy T TP Oy ly[?
It follows that Af = )2 + (ay2)2 + ( ) = 0 on D. Hence [t6’s formula

yields

t
Mt:MOJr/Vf dB+/Af ds—Mo—Z/‘BSPdB’
0

Thus M is a continuous local martingale.

It remains to show that M is bounded in L?. To this end, note that by part
(b), we have

#0175

L2t +1)) 2y
_/0 y (3/2 Xp( 2(t+1>
/2 1 (2(t + 1)) 12y~ 12 y
T(3/2) 20t + 1)/0 rja) O <_2(t+ 1)) dy
S ar(1/2) 1
COD(1/2) 2(t+1)
t >0,

St
as ['(z + 1) = z['(z) for z > 0 and since we integrate the density of a
Gamma(s, 2(t+1)> distribution. Therefore sup,., E[M?] =1 < co.

(d) For each t > 0,

LAy y
B = | Vi T2 O <_2(t+1)>dy

= ! h “lexp | — i
I(3/2)y/2(t + 1) /0 B+ )" e < 2(t + 1)) W

V2

N3

In particular, the map ¢ — FE[M,] is not constant, and thus M cannot be a
martingale.
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Exercise 9.5 Consider a probability space (2, F, P) supporting a Brownian motion
W = (W)i=0. Denote by F = (F;)i=0 the P-augmentation of the raw filtration
generated by W. Moreover, fix T > 0, a < b, and let F' := 1cw,<pp. The
aim of this exercise is to find explicitly the integrand H € L (W) in the Ito
representation

F = E[F] + /OT H, AW, (%)

(a) Define the martingale M = (M;)o<i<r by M; := E[F'| F;]. Show that there
exists a C%-function ¢g : R x [0,7) — R such that

M, = g(Wit), 0<t<T,

Compute g explicitly in terms of the distribution function ® of the standard
normal distribution.

(b) Let (fn)nen be a sequence of nonnegative reals with ¢, T 7. Use It6’s formula
to find for each n € N a predictable process H™ such that

M — My =H" o W.

(c) Find the process H € L (W) on [0, T] satisfying (x).

Solution 9.5
(a) As Wy — W, ~ N(0,T —t) is independent of F;, we have

7|

WT—Wt < CL—Wt
VT =t VT —t

Pla < <b | F
—Wt WT—Wt<b_Wt
VT —t > T —t VT —t
— h—
[WT W _ b-=W, Ft]_P

P

I
s

g

VT —t \/T—t

bm) o4 r)
g(Wi, t),

b—=x a—2x
gl t) = @ (T—t) -¢ (T—t)

(b) By It6’s formula and since M is a martingale, we have for 0 < ¢t < T that
dM; = %(Wt,t) dW,;. We then compute, for 0 <t < T,
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In particular, we have that M~ — My = H™ ¢ W, where

(c) We claim that

B R ex _M —ex —w
Hy = 1jo<i<ty) 27T(T—t)< p( 2(T—t)> p( Q(T_t)>>

satisfies (x). Since P[Wp € R\ {a,b}] = 1 and W is continuous P-a.s., we can
see that limyr Hy = 0 P-a.s. So H is continuous on [0, 7] and hence locally
bounded, so that H e W is well-defined and continuous on [0, 7. Also, we see
that M; = g(Wi, t) = Lia<wp<py = My P-a.s. as t T T. Now notice from the
construction of H that for each n € N,

Mtn — MO = (Hn L] W)tn = (H. W)tn
We can thus take the limit n — oo to obtain
My — My = (H ¢ W)r.

Since My = F and My = E[F], this implies that H satisfies (), as claimed.

Updated: April 15, 2025 9/



