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Exercise 9.1 Let W be a Brownian motion in R and µ ̸= 0 a constant. Define the
processes X1 = W and X2

t = Wt + µt, t ⩾ 0, and let P and Q denote the laws on
C[0, ∞) of X1 and X2, respectively. Prove that P ⊥ Q, meaning that P and Q are
mutually singular. Conclude that Q ̸≪ P and Q ̸≈ P . Show however that Q

loc≈ P ,
and write out explicitly dQ|Ft

dP |Ft
.

Solution 9.1 Define the set A ⊆ C[0, ∞) by

A :=
{

x ∈ C[0, ∞) : lim
t→∞

x(t)
t

= 0
}

.

We know from the lecture notes that almost surely,

lim
t→∞

Wt

t
= 0.

and therefore almost surely,

lim
t→∞

X1
t

t
= 0 and lim

t→∞

X2
t

t
= µ ̸= 0.

It follows that P [A] = 1 and Q[Ac] = 1, so that P ⊥ Q. It follows that Q ̸≪ P ,
and thus also Q ̸≈ P , since P [Ac] = 0 but Q[Ac] = 1 ̸= 0. However, we do have
that Q

loc≈ P . Indeed, fix t ⩾ 0 and define the process b ≡ −µ ∈ L2
loc(W ). We set

Z = E(
∫

bs dWs) = E(−µW ) = (exp(−µWs − 1
2µ2s))0⩽s⩽t and define the probability

measure Q0 on Ft by
dQ0|Ft

dP |Ft

= Zt. (1)

As Z > 0 P -a.s., we have Q0 ≈ P on Ft. By Theorem 4.10, W is under Q0 on [0, t]
a Brownian motion with drift −µ, i.e. Ws = W̃s − µs for 0 ⩽ s ⩽ t for some Q0-
Brownian motion W̃ on [0, t]. But rearranging gives W̃s = Ws +µs = X2

s . So on [0, t],
X2 has under Q and under A0 the same distribution, and so P |Ft ≈ Q0|Ft = Q|Ft .
As t was arbitrary, this shows that Q ≈ P with

dQ|Ft

dP |Ft

= Zt.
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Note, however, that Q0 = Q0,t as defined in (1) is an entire family of measures
depending on t; this family is consistent, but its Kolmogorov extension to F∞ is
not equivalent to P on F∞. Indeed, limt→∞

1
t

log Zt = −1
2µ2 < 0 implies that

limt→∞ Zt = 0.

Exercise 9.2 Let B = (B1, . . . , Bn) be a Brownian motion in Rn starting at y ̸= 0,
where n ⩾ 2, and set X := |B|. The process X is called the Bessel process of order
n.

(a) Show that there exists some Brownian motion W (not necessarily with respect
to the same filtration as for B) such that

dXt = dWt + n − 1
2Xt

dt.

Hint: You may use that P [Bt ̸= 0 for all t ⩾ 0] = 1.

Remark: By using mollifiers, one may show the same result when y = 0.

(b) Define the process X = |B|2. Show that for the same Brownian motion W as
in part (a), we have

dX t = 2
√

X t dWt + n dt.

Solution 9.2

(a) Consider the C2-function f : Rn\{0} → (0, ∞) given by f(x) := |x|. By the
hint, we can write X = f(B) P -a.s. Applying Itô’s formula then gives

dXt = |y| +
n∑

i=1

∫ t

0

Bi
s

|Bs|
dBi

s + n − 1
2

∫ t

0

1
|Bs|

ds.

Indeed, this can be seen by writing f(x1, . . . , xn) = (∑n
i=1 x2

i ) 1
2 and computing

∂f

∂xi

(x1, . . . , xn) = 1
2

(
n∑

i=1
x2

i

)− 1
2

2xi = xi

|x|

and
∂2f

∂(xi)2 (x1, . . . , xn) =
|x| − xi

xi

|x|

|x|2
= |x|2 − |xi|2

|x|3
= 1

|x|
− |xi|2

|x|3
,

so that
n∑

i=1

∂2f

∂(xi)2 (x1, . . . , xn) = n

|x|
−
∑n

i=1 |xi|2

|x|3
= n − 1

|x|
.

Setting Wt := ∑n
i=1

∫ t
0

Bi
s

|Bs| dBi
s, it remains to show that W = (Wt)t⩾0 is a

Brownian motion. By construction, W is a continuous local martingale null at
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zero. Moreover, as ⟨Bi, Bj⟩t = δi,jt, we get that

⟨W ⟩t =
d∑

i=1

∫ t

0

|Bi
s|2

|Bs|2
ds = t.

We may therefore conclude by Lévy’s characterisation of Brownian motion that
W is a Brownian motion, as required.

Alternatively, we can argue as follows. We know from the lecture notes that
dX t = 2

√
X t dWt + n dt. So Itô’s formula with f(x) =

√
x = x

1
2 gives for

X = f(X) that

dXt = 1
2(X t)− 1

2 dX t − 1
8(X t)− 3

2 d⟨X⟩t

= 1
2Xt

(2Xt dWt + n dt) − 1
8X−3

t 4X2
t dt

= dWt + n − 1
2Xt

dt,

as required.

(b) Applying Itô’s formula to X = g(X), where g(x) = x2, gives us

dX t = 2Xt dXt + d⟨X⟩t.

From part (a), we know that dXt = dWt + n−1
2Xt

dt, and therefore d⟨X⟩t = dt.
We thus obtain

dX t = 2Xt dWt + (n − 1) dt + dt = 2Xt dWt + n dt.

Writing Xt =
√

X t then gives the result.

Exercise 9.3 Let (Ω, F ,F = (Ft)t⩾0, P ) be a filtered probability space satisfying
the usual conditions.

(a) Let W, W̃ be two (P,F)-Brownian motions. Show that d⟨W, W̃ ⟩t = ρt dt for
some predictable process ρ taking values in [−1, 1].

Hint: Use the Kunita–Watanabe decomposition.

(b) The filtration F is called P -continuous if all local (P,F)-martingales are con-
tinuous. Show that F is P -continuous if and only if F is Q-continuous for all
Q ≈ P .

(c) Assume F is P -continuous and Q ≈ P . Show that each local (Q,F)-martingale
S = (St)t⩾0 is of the form

St = S0 + Mt +
∫ t

0
αs d⟨M⟩s with α ∈ L2

loc(M) (2)
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for some M ∈ Mc
0,loc(P ).

Hint: Use Girsanov’s theorem to find a semimartingale decomposition for S
under P . Then use the Kunita–Watanabe decomposition under P to describe
its finite variation part.

Remark: If S has the form (2), one says that it satisfies the structure condition.
This is a useful concept in mathematical finance.

Solution 9.3

(a) Using the Kunita–Watanabe decomposition, we can write W = ρ • W̃ + N for
some predictable integrand ρ ∈ L2

loc(W̃ ) and some local martingale N ∈ Mc
0,loc

strongly orthogonal to W̃ . Then by orthogonality and associativity of the
stochastic integral, we have

⟨W, W̃ ⟩t = ⟨ρ • W̃ + N, W̃ ⟩t =
∫ t

0
ρs d⟨W̃ ⟩s + ⟨N, W̃ ⟩t =

∫ t

0
ρs ds, t ⩾ 0.

It remains to show that ρ takes values in [−1, 1]. To this end, we first write for
each t ⩾ 0

⟨ρ • W̃ + N⟩t =
∫ t

0
ρ2

s ds + 2
∫ t

0
ρs d⟨W̃ , N⟩s + ⟨N⟩t

=
∫ t

0
ρ2

s ds + ⟨N⟩t,

where in the last line we use that W̃ and N are strongly orthogonal. We
therefore have∫ t

0
ds = t = ⟨W ⟩t = ⟨ρ • W̃ + N⟩t =

∫ t

0
ρ2

s ds + ⟨N⟩t,

and hence ∫ t

0
(1 − ρ2

s) ds = ⟨N⟩t.

In particular, the process t 7→
∫ t

0(1 − ρ2
s) ds is increasing, implying that ρ2 ⩽ 1

dt ⊗ P -a.e., as required.

(b) We only need to show the implication “⇒”, as “⇐” is trivial by taking Q = P .
So fix Q ≈ P and let ZQ = (ZQ

t )t⩾0 be the density process of Q with respect
to P . Since ZQ is a (P,F)-martingale, ZQ is continuous. Since Q ≈ P , we
have that ZQ

t > 0 P -a.s. and Q-a.s. for each t ⩾ 0 a.s. Therefore, 1/ZQ is also
continuous.

Now let X be a local (Q,F)-martingale. Then ZQX is a local (P,F)-martingale
and thus continuous P -a.s. Therefore, X = 1

ZQ (ZQX) is continuous P -a.s. As
Q ≈ P , we have that X is also continuous Q-a.s. Since X is an arbitrary local
(Q,F)-martingale, we have shown that F is Q-continuous, completing the proof.
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(c) Let ZP ;Q be the density process of P with respect to Q. Note that ZP ;Q
0 = 1,

and moreover ZP ;Q is strictly positive and continuous by part (b). Therefore,
we can write ZP ;Q = E(L) for L ∈ Mc

0,loc(Q) defined by L = 1
ZP ;Q • ZP .

Since S is a continuous local Q-martingale, we obtain by Girsanov’s theorem
that the process M given by

M := S − S0 − ⟨L, S − S0⟩

is a continuous local P -martingale. Rewriting, we get the P -semimartingale
decomposition

S = S0 + M + ⟨L, S − S0⟩.

It thus only remains to show that ⟨L, S −S0⟩ =
∫

α d⟨M⟩ for some α ∈ L2
loc(M).

Since L ∈ Mc
0,loc(Q), Girsanov’s theorem gives L̃ := L − ⟨L⟩ ∈ Mc

0,loc(P ).
Applying the Kunita–Watanabe decomposition to L̃ with respect to M , we
obtain that L̃ =

∫
α dM + N for some α ∈ L2

loc(M) and some N ∈ Mc
0,loc(P )

with N ⊥ M . Since M − (S − S0) and L̃ − L are continuous finite variation
processes, their quadratic covariation is 0. Therefore,

⟨L, S − S0⟩ = ⟨L̃, M⟩ =
〈∫

α dM + N, M
〉

=
∫

α d⟨M⟩,

which completes the proof.

Exercise 9.4 Let B = (B1, B2, B3) be a Brownian motion in R3 and fix a standard
normal random variable Z = (Z1, Z2, Z3) independent of B. Define the process
M = (Mt)t⩾0 by

Mt = 1
|Z + Bt|

.

(a) Show that P [Bt ̸= −Z for all t ⩾ 0] = 1 so that M is a.s. well defined.

Hint: You may use that P [Bt ̸= x for all t ⩾ 0] = 1 for any x ∈ R3 \ {0}.

(b) Show that |Z + Bt|2 ∼ Gamma(3
2 , 1

2(t+1)) for each t > 0, i.e., its density is given
by

ft(y) = (2(t + 1))−3/2y1/2

Γ(3/2) exp
(

− y

2(t + 1)

)
, y ⩾ 0.

Hint: Recall that when Y1, . . . , Yn ∼ Gamma(α, β) are independent, we have
Y1 + · · · + Yn ∼ Gamma(nα, β).

(c) Show that M is a continuous local martingale. Moreover, show that M is
bounded in L2, i.e., supt⩾0 E[|Mt|2] < ∞.
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(d) Show that M is a strict local martingale, i.e., M is not a martingale.

Remark: This is a standard example of a local martingale which is not a (true)
martingale. It also shows that even boundedness in L2 (which implies uniform
integrability) does not guarantee the martingale property.

Solution 9.4

(a) By independence of B and Z, we have that

P [Bt ̸= −Z for all t ⩾ 0] = E
[
P [Bt ̸= −x for all t ⩾ 0]|x=Z

]
⩾ E[1{Z ̸=0}]
= P [Z ̸= 0]
= 1,

as required.

(b) We first find the density function f̃t of |Z1 + B1
t |2. As Z1 + B1

t ∼ N (0, t + 1)
by independence, we have for each y ⩾ 0 that

P [|Z1 + B1
t |2 ⩽ y] =

∫ √
y

−√
y

1√
2π(t + 1)

e− z2
2(t+1) dz.

= 2
∫ √

y

0

1√
2π(t + 1)

e− z2
2(t+1) dz.

Changing variables to u = z2, we find that

P [|Z1 + B1
t |2 ⩽ y] = 2

∫ y

0

1√
2π(t + 1)

e− u
2(t+1)

1
2
√

u
du.

Differentiating in y, we get that

f̃t(y) = y−1/2

(2(t + 1))1/2√π
e− y

2(t+1) = y−1/2

(2(t + 1))1/2Γ(1/2)e− y
2(t+1) .

Therefore, |Z1 + B1
t |2 ∼ Gamma(1

2 , 1
2(t+1)), and similarly for |Z2 + B2

t |2 and
|Z3 + B3

t |2.

Now since Z1 + B1, Z2 + B2, Z3 + B3 are independent and ∼ Gamma(1
2 , 1

2(t+1)),
we have by the hint that

|Z + Bt|2 = |Z1 + B1
t |2 + |Z2 + B2

t |2 + |Z3 + B3
t |2 ∼ Gamma

(
3
2 ,

1
2(t + 1)

)
,

as required.
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(c) By part (a), the process Z + B = (Z + Bt)t⩾0 takes values in the open set
D := R3 \ {0} P -a.s. So we can apply Itô’s formula to Mt = f(Bt) with
f : D → (0, ∞) given by f(y) := 1

|y| .

For i = 1, 2, 3, we have

∂f

∂yi
(y) = − yi

|y|3
,

∂2f

(∂yi)2 (y) = −|y|2 + 3(yi)2

|y|5
.

It follows that ∆f = ∂2f
(∂y1)2 + ∂2f

(∂y2)2 + ∂2f
(∂y3)2 = 0 on D. Hence Itô’s formula

yields

Mt = M0 +
∫ t

0
∇f(Bs) dBs + 1

2

∫ t

0
∆f(Bs) ds = M0 −

3∑
i=1

∫ t

0

Bi
s

|Bs|3
dBi

s.

Thus M is a continuous local martingale.

It remains to show that M is bounded in L2. To this end, note that by part
(b), we have

E[M2
t ] = E

[
1

|Z + Bt|2

]

=
∫ ∞

0

1
y

(2(t + 1))−3/2y1/2

Γ(3/2) exp
(

− y

2(t + 1)

)
dy

= Γ(1/2)
Γ(3/2)

1
2(t + 1)

∫ ∞

0

(2(t + 1))−1/2y−1/2

Γ(1/2) exp
(

− y

2(t + 1)

)
dy

= 2Γ(1/2)
Γ(1/2)

1
2(t + 1)

= 1
t + 1 , t > 0,

as Γ(x + 1) = xΓ(x) for x > 0 and since we integrate the density of a
Gamma(1

2 , 1
2(t+1)) distribution. Therefore supt⩾0 E[M2

t ] = 1 < ∞.

(d) For each t > 0,

E[Mt] =
∫ ∞

0

1
√

y

(2(t + 1))−3/2y1/2

Γ(3/2) exp
(

− y

2(t + 1)

)
dy

= 1
Γ(3/2)

√
2(t + 1)

∫ ∞

0
(2(t + 1))−1 exp

(
− y

2(t + 1)

)
dy

=
√

2√
πt

.

In particular, the map t 7→ E[Mt] is not constant, and thus M cannot be a
martingale.
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Exercise 9.5 Consider a probability space (Ω, F , P ) supporting a Brownian motion
W = (Wt)t⩾0. Denote by F = (Ft)t⩾0 the P -augmentation of the raw filtration
generated by W . Moreover, fix T > 0, a < b, and let F := 1{a⩽WT ⩽b}. The
aim of this exercise is to find explicitly the integrand H ∈ L2

loc(W ) in the Itô
representation

F = E[F ] +
∫ T

0
Hs dWs. (∗)

(a) Define the martingale M = (Mt)0⩽t⩽T by Mt := E[F | Ft]. Show that there
exists a C2-function g : R × [0, T ) → R such that

Mt = g(Wt, t), 0 ⩽ t < T,

Compute g explicitly in terms of the distribution function Φ of the standard
normal distribution.

(b) Let (tn)n∈N be a sequence of nonnegative reals with tn ↑ T . Use Itô’s formula
to find for each n ∈ N a predictable process Hn such that

M tn − M0 = Hn • W.

(c) Find the process H ∈ L2
loc(W ) on [0, T ] satisfying (∗).

Solution 9.5

(a) As WT − Wt ∼ N (0, T − t) is independent of Ft, we have

Mt = P [a ⩽ WT ⩽ b | Ft]

= P

[
a − Wt√

T − t
⩽

WT − Wt√
T − t

⩽
b − Wt√

T − t

∣∣∣∣∣ Ft

]

= P

[
WT − Wt√

T − t
⩽

b − Wt√
T − t

∣∣∣∣∣ Ft

]
− P

[
WT − Wt√

T − t
⩽

a − Wt√
T − t

∣∣∣∣∣ Ft

]

= Φ
(

b − Wt√
T − t

)
− Φ

(
a − Wt√

T − t

)
= g(Wt, t),

where
g(x, t) = Φ

(
b − x√
T − t

)
− Φ

(
a − x√
T − t

)
.

(b) By Itô’s formula and since M is a martingale, we have for 0 ⩽ t < T that
dMt = ∂g

∂x
(Wt, t) dWt. We then compute, for 0 ⩽ t < T ,

dMt = 1√
2π(T − t)

(
exp

(
−(a − Wt)2

2(T − t)

)
− exp

(
−(b − Wt)2

2(T − t)

))
dWt.
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In particular, we have that M tn − M0 = Hn • W , where

Hn
t := 1{0⩽t⩽tn}

1√
2π(T − t)

(
exp

(
−(a − Wt)2

2(T − t)

)
− exp

(
−(b − Wt)2

2(T − t)

))
.

(c) We claim that

Ht = 1{0⩽t<T }
1√

2π(T − t)

(
exp

(
−(a − Wt)2

2(T − t)

)
− exp

(
−(b − Wt)2

2(T − t)

))

satisfies (∗). Since P [WT ∈ R \ {a, b}] = 1 and W is continuous P -a.s., we can
see that limt↑T Ht = 0 P -a.s. So H is continuous on [0, T ] and hence locally
bounded, so that H • W is well-defined and continuous on [0, T ]. Also, we see
that Mt = g(Wt, t) → 1{a⩽WT ⩽b} = MT P -a.s. as t ↑ T . Now notice from the
construction of H that for each n ∈ N,

Mtn − M0 = (Hn • W )tn = (H • W )tn .

We can thus take the limit n → ∞ to obtain

MT − M0 = (H • W )T .

Since MT = F and M0 = E[F ], this implies that H satisfies (∗), as claimed.
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