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Exercise 10.1 Let U : R → R be a strictly increasing utility function and consider
a general arbitrage-free market in finite discrete time, with horizon T ∈ N and with
F0 trivial. Recall that C = GT (Θ) − L0

+.

(a) Show that an optimizer for

u(x) = sup
ϑ∈Θ

E [U(x + GT (ϑ)]

can be obtained from an optimizer for

uC(x) = sup
f∈C

E [U(x + f)] ,

and vice versa.

(b) Denote by Pa the set of absolutely continuous martingale measures. Show that
if Ω is finite and f ∈ L0, then

f ∈ C ⇐⇒ EQ[f ] ≤ 0, ∀Q ∈ Pa.

Solution 10.1

(a) First note that GT (Θ) ⊆ C. Therefore, uC(x) ≥ u(x).
Suppose f ∗ is a maximizer. Then, since f ∗ ∈ C, f ∗ = GT (ϑ∗) − Y for some
ϑ∗ ∈ Θ and Y ≥ 0, and

uC(x) = E
[
U
(
x + GT (ϑ∗) − Y

)]
≤ E

[
U
(
x + GT (ϑ∗)

)]
≤ u(x).

Since U is strictly increasing, Y must be identically zero because otherwise the
first inequality above becomes strict. Hence, uC(x) = u(x), and the optimizer
f ∗ corresponds to an optimizer ϑ∗ for the first problem.
On the other hand, if ϑ∗ is an optimizer of the first problem, then f ∗ = GT (ϑ∗)
must optimize the second, for otherwise there would exist a strictly better f ′,
and by the argument above also a strictly better ϑ′, violating the assumption
that ϑ∗ is an optimizer.
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(b) Since Ω is finite, every f is bounded from below by minω f . Therefore, by
Theorem II.7.2,

f ∈ C ⇐⇒ EQ[f ] ≤ 0, ∀Q ∈ Pe.

We need to extend this statement to Pa. If EQ[f ] ≤ 0 for all Q ∈ Pa, the
desired implication holds trivially. On the other hand, suppose f ∈ C. Then
EQ[f ] ≤ 0 for all EMMs Q. Thus,

sup
Q∈Pe

EQ[f ] ≤ 0,

and, by Exercise 3.1,
sup
Q∈Pa

EQ[f ] ≤ 0.

This is what we wanted to show.
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Exercise 10.2 Consider a general market in finite discrete time with horizon T ∈ N.
Let U : (0, ∞) → R be an increasing and concave utility function, and denote by u
the indirect utility from maximizing the utility of final wealth, i.e.,

u(x) = sup
θ∈Θx

adm

E
[
U
(
x + GT (ϑ)

)]
,

for x > 0, where Θx
adm = {ϑ ∈ Θ : ϑ is x-admissible}.

(a) Assume that u(x0) < ∞ for some x0 > 0. Show that u is increasing, concave
and u(x) < ∞ for all x > 0.

(b) Show that if U is unbounded from above and the market admits an arbitrage
opportunity, then u ≡ +∞. What happens if U is not unbounded from above?

Solution 10.2

(a) For any x ≤ y, we have that

E
[
U
(
x + GT (ϑ)

)]
≤ E

[
U
(
y + GT (ϑ)

)]
.

Taking the supremum on both sides yields u(x) ≤ u(y).
Let z = λx + (1 − λ)y for some λ ∈ [0, 1]. For any ϑx ∈ Θx

adm and ϑy ∈ Θy
adm,

it follows from linearity of GT (·) that

z + GT

(
λϑx + (1 − λ)ϑy

)
= λ

(
x + GT (ϑx)

)
+ (1 − λ)

(
y + GT (ϑy)

)
≥ 0,

i.e., ϑz := λϑx + (1 − λ)ϑy ∈ Θz
adm. Finally, using the above inequality and the

concavity of U ,

E
[
U
(
z + GT (ϑz)

)]
≥ λE

[
U
(
x + GT (ϑx)

)]
+ (1 − λ)E

[
U
(
y + GT (ϑy)

)]
.

Taking the supremum over ϑx and ϑy preserves the inequality, showing that u
is also concave.
Let x be any point. By monotonicity, we are done if x ≤ x0, so assume that
x > x0. Let y ∈ (0, x0). Then x0 = λx + (1 − λ)y for some λ ∈ (0, 1). By
concavity,

u(x0) ≥ λu(x) + (1 − λ)u(y),

showing that u(x) is finite.

(b) Let ϑa denote an arbitrage opportunity with GT (ϑa) ≥ 0 P -a.s. and GT (ϑa) > 0
on some set A with P [A] > 0. Hence, ϑa ∈ Θx

adm for every x, and the same
holds for nϑa, n ∈ N. Thus,

u(x) ≥ E[U(x)1Ac ] + E
[
U
(
x + nGT (ϑa)

)
1A

]
.
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By monotone convergence, the second term converges to E[U(∞)1A] as n → ∞,
and by the assumption that U is unbounded, this value is infinite. Thus,
u(x) = +∞ for every x.
Suppose that U is bounded from above. So U(∞) := lim x → ∞U(x) exists in
R. Set A := {GT (ϑa) > 0} and P [A] = α > 0. Then (x + nGT (ϑa))1A → ∞1A

which implies u(x) ≥ (1 − α)U(x) + αU(∞). This in turn yields

lim inf
x→∞

u(x)
U(x) ≥ 1.

But clearly u(x) ≤ U(∞) for all x. So we have

lim sup
x→∞

u(x)
U(x) ≤ 1,

and therefore
lim

x→∞

u(x)
U(x) = 1.
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Exercise 10.3

(a) Suppose that U : (0, ∞) 7→ R is strictly increasing, strictly concave and C1.
Show that for any Q ∈ Pe, we have

sup
f∈L0

E

[
U(f) − fλ

dQ

dP

]
= E

[
sup
z>0

(
U(z) − zλ

dQ

dP

)]
.

(b) Using the notations from Theorem IV.0.5 and Theorem IV.0.3, show that
Q∗ = Q∗(λ∗), i.e., the measure Q∗ constructed in the proof of Theorem IV.0.5
coincides with the optimal Q∗(λ∗) for the dual problem in Theorem IV.0.3 with
the parameter λ = λ∗ from the proof of Theorem IV.0.5.

Solution 10.3

(a) ” ≤ ” is clear. For ” ≥ ”, note that sup
z>0

(
U(z) − zy

)
= J(y) for y > 0 is

attained in z = (U ′)−1(y). So if we set f̃ := (U ′)−1(λdQ
dP

), then f̃ ∈ L0 and

E

[
sup
z>0

(
U(z) − zλ

dQ

dP

)]
= E

[
U(f̃) − f̃λ

dQ

dP

]
≤ sup

f∈L0
E

[
U(f) − fλ

dQ

dP

]
.

(b) Using the notations from the lectures,

E

[
J

(
λ∗ dQ∗

dP

)]
= E

[
U(f ∗)

]
− λ∗x ≤ E

[
J

(
λ∗ dQ

dP

)]
∀Q,

hence Q∗ = Q∗(λ∗).
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