Introduction to Mathematical Finance Exercise sheet 12

Exercise 12.1

- (a) Prove the uniqueness of the solution h_z^* to the dual problem.
- (b) Assuming $z \neq z'$ and $j(z), j(z') < \infty$, prove that $P[h_z^* \neq h_{z'}^*] > 0$.

Solution 12.1

(a) Suppose to the contrary that h_z^*, \tilde{h}_z^* are two solutions with $P[h_z^* \neq \tilde{h}_z^*] > 0$. Set $h_0 := \frac{1}{2}(h_z^* + \tilde{h}_z^*)$. Since J is strictly convex, we have on $\{h_z^* \neq \tilde{h}_z^*\}$ $J(h_0) < \frac{1}{2}(J(h_z^*) + J(\tilde{h}_z^*))$, and $J(h_0) \le 1/2(J(h_z^*) + J(\tilde{h}_z^*))$ P-a.s. Because $\{h_z^* \neq \tilde{h}_z^*\}$ has positive probability, we obtain

$$E[J(h_0)] < \frac{1}{2}E[(J(h_z^*) + J(\tilde{h}_z^*))] = j(z).$$

But note that $h_0 \in \mathcal{D}(z)$ due to the convexity of $\mathcal{D}(z)$. This contradicts the optimality of h_z^* .

(b) Suppose to the contrary that $h_z^* = h_{z'}^*$ *P*-a.s. for z < z'. Then $j(z') = E[J(h_{z'}^*)] = E[J(h_z^*)]$. Since $h_z^* \leq Z_T$ for some $Z \in \mathcal{Z}(z)$, then the process $Z' := Z + (z'-z)Z \in \mathcal{Z}(z')$ and $h_z^* + (z'-z)Z_T \leq Z'_T$, hence $h_z^* + (z'-z)Z_T \in \mathcal{D}(z')$. Since *J* is strictly decreasing, we have $E[J(h_z^* + (z'-z)Z_T)] < E[J(h_z^*)] = j(z')$, which contradicts the optimality of $h_{z'}^*$ because $h_z^* + (z'-z)Z_T \neq h_{z'}^*$ *P*-a.s.

Exercise 12.2

(a) Analogically to the proof of Lemma IV.5.2 show that, for fixed $0 < \mu < 1$ we can find a constant $\tilde{C} < \infty$ and $y_0 > 0$ such that

$$-J'(\mu y) < \tilde{C} \frac{J(y)}{y} \quad \text{for } 0 < y < y_0.$$

(b) Prove that if $z_n \to z$ and all z_n and z are in the interior of $\{j < \infty\}$ and $\mu_n \uparrow 1$, then

$$\lim_{n \to \infty} E[h_{z_n}^* I(\mu_n h_{z_n}^*)] = E[h_z^* I(h_z^*)].$$

Hint: Use (a) and almost repeat the proof of Lemma IV.5.3.

Solution 12.2

(a) From Lemma IV.5.2 we know that we can find a constant $C < \infty$ and $y_0 > 0$ such that

$$-J'(y) < C \frac{J(y)}{y}$$
 for $0 < y < y_0$,

and hence for $\hat{C} = C/\mu$ we get

$$-J'(\mu y) < \hat{C} \frac{J(\mu y)}{y}$$

Since J is convex and $\mu < 1$, then $J(y) \ge J(\mu y) + J'(\mu y)(y - \mu y)$, that means that $J(\mu y) \le J(y) - J'(\mu y)y(1 - \mu)$, so that

$$-J'(\mu y) < \hat{C}\left(\frac{J(y)}{y} - J'(\mu y)(1-\mu)\right),$$

and hence after defying $\tilde{C} = \hat{C}/\mu$ we get

$$-J'(\mu y) < \tilde{C} \frac{J(y)}{y} \quad \text{for } 0 < y < y_0.$$

(b) We first rewrite $h_{z_n}^* I(\mu_n h_{z_n}^*) = \mu_n^{-1}(\mu_n h_{z_n}^* I(\mu_n h_{z_n}^*))$; so it suffices to show that

$$\lim_{n \to \infty} E[\mu_n h_{z_n}^* I(\mu_n h_{z_n}^*)] = E[h_z^* I(h_z^*)].$$

We now argue as in the proof of Lemma IV.5.3.

First by Lemma IV.5.1 and continuity of $I \ge 0$, $\mu_n h_{z_n}^* I(\mu_n h_{z_n}^*) \to h_z^* I(h_z^*)$ in L^0 . So we only need to prove uniform integrability.

I. This part is the same. Since *I* is decreasing and *U* is increasing, we get for $y \ge y_0 \ge 0$ that

$$0 \le yI(y) = U(I(y)) - J(y) \le U(I(y_0)) + J^{-}(y)$$

$$2 / 4$$

and therefore

$$0 \le X_n := \mu_n h_{z_n}^* I(\mu_n h_{z_n}^*) \mathbb{1}_{\{\mu_n h_{z_n}^* \ge y_0\}} \le \left| U(I(y_0)) \right| + J^-(\mu_n h_{z_n}^*).$$

If $z_n \to z$, $\mu_n \to \mu$, then (z_n) is bounded by some z' and (μ_n) is bounded by some μ' , say, and so all the $\mu_n h_{z_n}^*$ lie in $\mathcal{D}(\mu' z')$. But we know from IV.3.3 that the family $\{J^-(h) : h \in \mathcal{D}(\mu' z')\}$ is uniformly integrable, and so also $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable.

II. From (a) it follows that there exist $C < \infty$ and $y_0 > 0$ such that

$$0 \le \mu_n h_{z_n}^* I(\mu_n h_{z_n}^*) \mathbb{1}_{\{\mu_n h_{z_n}^* < y_0\}} \le C |J(h_{z_n}^*)|,$$

so it is enough to prove that $(|J(h_{z_n}^*)|)_{n\in\mathbb{N}}$ is uniformly integrable, but the fact that such a sequence is uniformly integrable is shown in the proof of Lemma IV.5.3.

Exercise 12.3 Consider a general market in finite discrete time with horizon $T \in \mathbb{N}$. Let $U : (0, \infty) \to \mathbb{R}$ be an increasing and concave utility function, and denote by u the indirect utility from maximizing the utility of final wealth, i.e.,

$$u(x) = \sup_{\vartheta \in \Theta^x} E\Big[U\Big(x + G_T(\vartheta)\Big)\Big],$$

for x > 0, where $\Theta^x = \{ \vartheta \in \Theta : \vartheta \text{ is } x \text{-admissible} \}.$

Suppose that U is strictly increasing, $U(\infty) < \infty$ and X satisfies NA. Show that if there exists an optimal strategy ϑ^* for x, then $u(x) < U(\infty)$.

Solution 12.3 Fix x > 0. Let ϑ^* be an optimal strategy. Denote $A := \{x + G_T(\vartheta^*) = \infty\}$. Since X satisfies NA, then P(A) < 1. Then, since U is strictly increasing:

$$u(x) = P[A]U(\infty) + E\left[I(A^c)U\left(x + G_T(\vartheta^*)\right)\right] < U(\infty).$$