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Exercise 5.1 Consider a trinomial two-asset model. The first asset is a risk-free
bond with initial value S0

0 = 1 and the second asset is a risky stock with initial value
S1

0 = 2 and whose evolution under the real world measure P is given by the following
tree:

We also suppose that the spot interest rate is r = 0.

(a) Find all risk-neutral measures for this model.

Now introduce a call option on the risky asset with strike K = 2 and maturity T .

(b) What is the terminal payoff H of this contingent claim?

(c) Find the least expensive super replicating portfolio, i.e. the portfolio that
attains the infimum in the definition of πs(H).

(d) Find the most expensive sub-replicating portfolio.

Solution 5.1

(a) An equivalent martingale measure solves EQ[S1
1 ] = S1

0 (no discounting is
needed since r = 0). By Lemma I.4.1, we can identify the measure Q with
a vector q = (q1, q2, q3)⊤ ∈ R3

++ where q1 = Q(S1
1 = 3), q1 = Q(S1

1 = 2) and
q1 = Q(S1

1 = 1). Q being an EMM, give the following equations:
3q1 + 2q2 + q3 = 2
q1 + q2 + q3 = 1
q1, q2, q2 > 0
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This gives that the set of all EMMs is given by

P = {(q1, 1 − 2q1, q1) | 0 < q1 < 1/2}

(b) The terminal payoff of the call option is (ST −K)+.

(c) Denoting θ0 and θ1 the holding in the bond and the stock, to super-replicate
the payout H, we are asked to minimize θ0 + 2θ1 subject to the constraints

θ0 + 3θ1 ≥ 1
θ0 + 2θ1 ≥ 0
θ0 + θ1 ≥ 0

By Theorem I.7.2 and the bonus question of Problem 1, we now that there
exist a vector θ∗ = (θ0∗

, θ1∗)⊤ such that

θ0∗
S0

0 + θ1∗
S1

0 = sup
Q∈P

EQ [H] = sup
0<q1<1/2

[q1 + (1 − 2q1) · 0 + q1 · 0] = 1/2

Unfortunately, the Linear Programming duality principle only tells us how to
calculate the seller’s price but tells nothing about the strategy that would give
that price. However, for this problem, we can easily see that θ∗ = (−1/2, 1/2)⊤.

(d) Similarly, the most expensive sub-replication cost is 0 and is attained for
θ∗ = (0, 0)⊤.
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Exercise 5.2
Consider a model with d = 1 traded risky asset X with X0 = 1 and

∆Xk = ηk, k = 1, 2, 3,

where the ηk are i.i.d. η1 ∼ N (0, 1)-distributed.

(a) Suppose that a trader decides at time k = 0 to buy 2 shares, to sell 3 shares at
k = 1 and then to buy 1 share at time k = 2. Denote by Gk his cumulative gain
from the corresponding self-financing trading strategy. Find the distribution of
G3.

(b) Suppose that Fk = σ(X1, . . . , Xk) for k = 1, 2, 3. Show that there is no
arbitrage in this model.

Solution 5.2

(a) Recall the following property of the Gaussian distribution: if Y ∼ N (a, b),
Z ∼ N (c, d) and Y, Z are independent, then for any α, β ∈ R, we have
αY +βZ ∼ N (αa+βc, α2b+β2d). Thus G3 = 2∆X1−3∆X2+∆X3 ∼ N (0, 14).

(b) From the definition of the model, we have E[(Xk −Xk−1)|Fk−1] = 0, = so that
X is a martingale. Hence by Proposition II.2.3, there is no arbitrage.
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Exercise 5.3 Consider the standard model for a financial market in finite discrete
time with a numéraire S0.

(a) Show that a strategy ψ is self-financing for S if and only if it is self-financing
for S/S0.

(b) Show that S satisfies NA’ if and only if S/S0 satisfies NA’.

(c) Show that S satisfies NA if and only if S/S0 satisfies NA.

Solution 5.3

(a) Notice that for k = 1, . . . , T − 1

(ψk+1 − ψk)Sk = 0 if and only if (ψk+1 − ψk)Sk/S
0
k = 0.

That means that a strategy ψ is self-financing for S if and only if it is self-
financing for S/S0.

(b) We know that for a numéraire S0 > 0 we have V (ψ) = Ṽ (ψ)/S0, so that
{−Ṽ0(ψ) ≥ 0 a.s., ṼT (ψ) ≥ 0 a.s.} if and only if {−V0(ψ) ≥ 0 a.s., VT (ψ) ≥
0 a.s.} Thus we conclude that existence of (generalized) arbitrage for S is
equivalent to the existence of arbitrage for S/S0.

(c) Claim. NA for S ⇔ NA’ for S.
Clear that NA’ for S/S0 ⇒ NA for S/S0. To show the converse, we will use
the following strategy: NA for S/S0 ⇒ NA for S ⇒ NA’ for S ⇒ NA’ for
S/S0. The only implication here to prove is "NA for S/S0 ⇒ NA for S".
Suppose that NA for S/S0 holds. Consider the construction in "4) ⇒ 5)" of P
II.2.1. This constructs ψ̄, self-financing, with V0(ψ̄) = 0 P -a.s, VT (ψ̄) ∈ L0

+\{0},
and V (ψ̄) ≥ 0 i.e. an arbitrage opportunity of first kind for S/S0 which is
0-admissible for S/S0.

Multiplying everywhere by S0 > 0 gives Ṽ0(ψ̄) = 0 P -a.s., ṼT (ψ̄) ∈ L0
+ \ {0}

and Ṽ (ψ̄) ≥ 0, i.e., an arbitrage of first kind for S which is 0-admissible for S.
This is exactly what we want.
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