Introduction to Mathematical Finance

Exercise sheet 6

Exercise 6.1 Consider a probability space (Ω, \mathcal{F}, P) with $\mathcal{F} = \sigma(A_1, \dots, A_n)$, where $\bigcup_{i=1}^n A_i = \Omega$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. A probability measure Q on \mathcal{F} is called absolutely continuous with respect to P if for any $A \in \mathcal{F}$, P[A] = 0 implies that Q[A] = 0.

(a) Show directly, without using the Radon–Nikodym theorem, that Q is absolutely continuous with respect to P if and only if there exists a random variable $\xi \geq 0$ with $E^P[\xi] = 1$ and

$$Q[A] = \int_A \xi dP$$
 for all $A \in \mathcal{F}$.

(b) Two probability measures Q and P on \mathcal{F} are equivalent on \mathcal{F} if for any $A \in \mathcal{F}$, we have Q(A) = 0 if and only if P[A] = 0. Construct an example where Q is absolutely continuous with respect to P, but Q and P are not equivalent.

Exercise 6.2

- (a) Suppose that $(\xi_k)_{k\in\mathbb{N}}$ are independent integrable random variables with expectation 1. Define the process $X = \{X_n\}_{n\in\mathbb{N}_0}$ by $X_n := \prod_{k=1}^n \xi_k$. Show that X is a martingale for its natural filtration.
- (b) Give an example of a stochastic process in discrete time which is not locally bounded.

Exercise 6.3

Consider a sequence $(\xi_k)_{k\in\mathbb{N}}$ of i.i.d. random variables with $\xi_1 \sim \mathcal{N}(0,1)$. Define the process $M = (M_n)_{n\in\mathbb{N}_0}$ by $M_n := \sum_{k=1}^n \xi_k$. Let $\mathbb{F} = (\mathcal{F}_k)_{k\in\mathbb{N}_0}$ be the natural filtration of M.

- (a) Show that $X_n := M_n^2 n, n \in \mathbb{N}_0$, is a martingale.
- (b) Show that $Y_n := \exp(M_n n/2), n \in \mathbb{N}_0$, is a martingale.
- (c) For any bounded predictable process $\alpha = (\alpha_i)_{i \in \mathbb{N}}$ define $N := \alpha \cdot M$ so that $N_k = \sum_{i=1}^k \alpha_i (M_i M_{i-1})$ for $k \in \mathbb{N}_0$. Define also $\langle N \rangle = (\langle N \rangle_k)_{k \in \mathbb{N}_0}$ by $\langle N \rangle_k := \sum_{i=1}^k \alpha_i^2$. Show that $X := N^2 \langle N \rangle$ and $Y := \exp(N \langle N \rangle/2)$ are martingales.

Exercise 6.4

Using the notions from the lecture, show that the following are equivalent:

- (a) $S = S^0(1, X)$ satisfies NA.
- (b) $\mathcal{G}_{adm} \cap L^0_+ = \{0\}.$
- (c) $C_{adm} \cap L^0_+ = \{0\}.$