Introduction to Mathematical Finance Exercise sheet 6

Exercise 6.1 Consider a probability space (Ω, \mathcal{F}, P) with $\mathcal{F} = \sigma(A_1, \ldots, A_n)$, where $\bigcup_{i=1}^n A_i = \Omega$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. A probability measure Q on \mathcal{F} is called absolutely continuous with respect to P if for any $A \in \mathcal{F}$, P[A] = 0 implies that Q[A] = 0.

(a) Show directly, without using the Radon–Nikodym theorem, that Q is absolutely continuous with respect to P if and only if there exists a random variable $\xi \ge 0$ with $E^{P}[\xi] = 1$ and

$$Q[A] = \int_A \xi dP$$
 for all $A \in \mathcal{F}$.

(b) Two probability measures Q and P on \mathcal{F} are equivalent on \mathcal{F} if for any $A \in \mathcal{F}$, we have Q(A) = 0 if and only if P[A] = 0. Construct an example where Q is absolutely continuous with respect to P, but Q and P are not equivalent.

Solution 6.1

(a) Consider first Q defined by $Q[A] = \int_A \xi dP$ for $A \in \mathcal{F}$. From the definition of \mathcal{F} it follows that any set $A \in \mathcal{F}$ is of the form $A = \bigcup_{j \in J} A_j$, where $J \subseteq \{1, ..., n\}$. So that for any $A \in \mathcal{F} Q[A] = \sum_{j \in J} Q[A_j]$. From $\xi \ge 0$ and $E^P[\xi] = 1$ it is clear that Q is a probability measure on \mathcal{F} . Since ξ is a random variable on (Ω, \mathcal{F}) , it is of the form $\xi = \sum_{i=1}^n c_i I_{A_i}$ for some $c_i \ge 0$. Since for any $A \in \mathcal{F} Q[A] = \sum_{j \in J} Q[A_j] = \sum_{j \in J} c_j P[A_j]$ and $P[A] = \sum_{j \in J} P[A_j]$, then P[A] = 0 implies that Q[A] = 0, so that Q is absolutely continuous with respect to P on \mathcal{F} .

Now suppose that Q is absolutely continuous with respect to P on \mathcal{F} . For $i \in \{1, \ldots, n\}$ if $P[A_i] = 0$ define $c_i := 0$ and otherwise $c_i := \frac{Q[A_i]}{P[A_i]}$. Then $\xi := \sum c_i I_{A_i}$ is clearly ≥ 0 , and the construction of ξ implies that $E^P[\xi] = \sum c_i P[A_i] = \sum Q[A_i] = 1$ and $Q[A_i] = \int_{A_i} \xi dP$.

(b) Consider $\mathcal{F} = \sigma(A_1, A_2)$, with $A_1 \cup A_2 = \Omega$ and $A_1 \cap A_2 = \emptyset$. Consider the probability measures Q and P defined by $Q[A_1] = 1, Q[A_2] = 0$ and $P[A_1] = P[A_2] = 1/2$. Then it is clear that Q is absolutely continuous with respect to P, but P and Q are not equivalent.

Exercise 6.2

- (a) Suppose that $(\xi_k)_{k\in\mathbb{N}}$ are independent integrable random variables with expectation 1. Define the process $X = \{X_n\}_{n\in\mathbb{N}_0}$ by $X_n := \prod_{k=1}^n \xi_k$. Show that X is a martingale for its natural filtration.
- (b) Give an example of a stochastic process in discrete time which is not locally bounded.

Solution 6.2

(a) Denote the natural filtration of X as $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$. Then X is adapted by definition, and integrable because the product of independent integrable random variables is integrable. Moreover, by the definition of X and the properties of conditional expectation, we have

$$E[X_n - X_{n-1} | \mathcal{F}_{n-1}] = \left(\prod_{k=1}^{n-1} \xi_k\right) E[\xi_n - 1 | \mathcal{F}_{n-1}] = \left(\prod_{k=1}^{n-1} \xi_k\right) E[\xi_n - 1] = 0.$$

Thus X is a martingale.

(b) Start with a sequence $(\xi_k)_{k\in\mathbb{N}}$ of nonnegative random variables and define the process $X = (X_n)_{n\in\mathbb{N}_0}$ by $X_n = \sum_{k=1}^n \xi_k$. Then $X_0 = 0$, so $X^{\tau} = X^{\tau}I_{\{\tau>0\}}$, and so it is enough to consider any stopping times $\tau \ge 1$. Then $X_{\tau} \ge X_1I_{\{\tau\ge1\}} = \xi_1$ because the ξ_k are nonnegative. So if ξ_1 is unbounded, then X^{τ} cannot be bounded for any stopping time $\tau \ge 1$, and so X is not locally bounded.

Exercise 6.3

Consider a sequence $(\xi_k)_{k\in\mathbb{N}}$ of i.i.d. random variables with $\xi_1 \sim \mathcal{N}(0,1)$. Define the process $M = (M_n)_{n\in\mathbb{N}_0}$ by $M_n := \sum_{k=1}^n \xi_k$. Let $\mathbb{F} = (\mathcal{F}_k)_{k\in\mathbb{N}_0}$ be the natural filtration of M.

- (a) Show that $X_n := M_n^2 n, n \in \mathbb{N}_0$, is a martingale.
- (b) Show that $Y_n := \exp(M_n n/2), n \in \mathbb{N}_0$, is a martingale.
- (c) For any bounded predictable process $\alpha = (\alpha_i)_{i \in \mathbb{N}}$ define $N := \alpha \cdot M$ so that $N_k = \sum_{i=1}^k \alpha_i (M_i M_{i-1})$ for $k \in \mathbb{N}_0$. Define also $\langle N \rangle = (\langle N \rangle_k)_{k \in \mathbb{N}_0}$ by $\langle N \rangle_k := \sum_{i=1}^k \alpha_i^2$. Show that $X := N^2 \langle N \rangle$ and $Y := \exp(N \langle N \rangle/2)$ are martingales.

Solution 6.3

Questions (a) and (b) follow directly from (c) by taking $\alpha \equiv 1$. So we only prove (c). Clearly, N is adapted and $\langle N \rangle$ is predictable for \mathbb{F} . Moreover, both X and Y are integrable because α is bounded and the ξ_i have all exponential moments. For the martingale property, note that N is a martingale, so that

$$E[\Delta(N^2)_k | \mathcal{F}_{k-1}] = E[(\Delta N_k)^2 | \mathcal{F}_{k-1}] =$$
$$= \alpha_k^2 E[(\Delta M_k)^2 | \mathcal{F}_{k-1}] = \alpha_k^2 E[\xi_k^2] = \alpha_k^2 = \Delta \langle N \rangle_k$$

This shows that $X = N^2 - \langle N \rangle$ is a martingale.

Similarly, using that α_k is \mathcal{F}_{k-1} - measurable, ξ_k is independent of \mathcal{F}_{k-1} and $\Delta N_k = \alpha_k \Delta M_k = \alpha_k \xi_k$, we get $E[Y_k/Y_{k-1}|\mathcal{F}_{k-1}] = E[\exp(\Delta N_k - \Delta \langle N \rangle_k/2)|\mathcal{F}_{k-1}] = E[\exp(\alpha_k \xi_k - \alpha_k^2/2)|\mathcal{F}_{k-1}] = E[\exp(\lambda \xi_k - \lambda^2/2)]|_{\lambda = \alpha_k} = 1$ because $\xi_k \sim \mathcal{N}(0, 1)$. So Y is also a martingale.

Exercise 6.4

Using the notions from the lecture, show that the following are equivalent:

- (a) $S = S^0(1, X)$ satisfies NA.
- (b) $\mathcal{G}_{adm} \cap L^0_+ = \{0\}.$
- (c) $\mathcal{C}_{adm} \cap L^0_+ = \{0\}.$

Solution 6.4 By Exercise 4.3(c), NA for S and NA for S/S^0 are equivalent. By Proposition II.2.1, NA for S/S^0 is equivalent to $\mathcal{G} \cap L^0_+(\mathcal{F}_T) = \{0\}$, and this is also equivalent to $\mathcal{G} \cap L^0_+ = \{0\}$ because $\mathcal{G} \subseteq L^0(\mathcal{F}_T)$. Because $0 \in \mathcal{G}_{adm} \subseteq \mathcal{G}$, the condition $\mathcal{G} \cap L^0_+ = \{0\}$ implies $\mathcal{G}_{adm} \cap L^0_+ = \{0\}$, and so we get " $(a) \Rightarrow (b)$ ". Conversely, if we look at the proof of "5) \Rightarrow 1)" for Proposition II.2.1, we can see that a slight modification also proves that $\mathcal{G}_{adm} \cap L^0_+ = \{0\}$ implies NA for S/S^0 .

Indeed, if ψ is *a*-admissible in that argument, then

$$V(\bar{\psi}) = V(\psi) - V_0(\psi)V(\psi^*) = V(\psi) - V_0(\psi) \ge V(\psi)$$

shows that $\bar{\psi}$ is also *a*-admissible, and the rest of the argument goes as before. So we also have " $(b) \Rightarrow (a)$ ".

Because $0 \in \mathcal{G}_{adm} \subseteq \mathcal{C}_{adm}$, we clearly have " $(c) \Rightarrow (b)$ ". Conversely, if $c \in \mathcal{C}_{adm}$, then c = g - Y with $g \in \mathcal{G}_{adm}$ and $Y \ge 0$. If also $c \in L^0_+$, then $c \ge 0$ and $g = c + Y \ge 0$ so that $g \in \mathcal{G}_{adm} \cap L^0_+$. By (b), we then have 0 = g = c + Y with $c \ge 0, Y \ge 0$, and therefore also c = 0. This shows that $\mathcal{C}_{adm} \cap L^0_+ = \{0\}$ and hence " $(b) \Rightarrow (c)$ ".