Coordinator: Filippo Beretta

Mathematics for New Technologies in Finance

Exercise sheet 4

Exercise 4.1 (Signatures) Through this exercise, we let $E = \mathbb{R}^d$, J an interval on \mathbb{R} , and denote $\mathbf{Sig}_J: \mathcal{C}^1_0(J, E) \to \mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}^1_0(J, E)$ and we let $\mathbf{Sig}_J^{(M)}$ denote the truncated signature map up to order $M: \mathbf{Sig}_J^{(M)}(X) = (1, \mathbf{s}_1, \dots, \mathbf{s}_M) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}^1_0([0, s], E)$ and $Y \in \mathcal{C}^1_0([s, t], E)$.

- (a) Let $X_t = t\mathbf{x} \in \mathbb{R}^d$ for all $t \in [0,1]$. Calculate $\mathbf{Sig}_{[0,1]}(X)$.
- (b) Let $X \in \mathcal{C}_0^1([0,T],E)$ and $X_0 = 0$. Prove that

$$\mathbf{Sig}_{[0,1]}(X)_{1,2} + \mathbf{Sig}_{[0,1]}(X)_{2,1} = \mathbf{Sig}_{[0,1]}(X)_1 \cdot \mathbf{Sig}_{[0,1]}(X)_2.$$

- (c) Let $X \in \mathcal{C}^1_0([0,1],\mathbb{R})$ s.t. $X_t = \sin(t)$ for all $t \in [0,1]$. Calculate $\mathbf{Sig}^{(2)}_{[0,1]}(X)$ i.e. the signatures of X up to order 2.
- (d) Let $X \in \mathcal{C}_0^1([0,1],\mathbb{R}^2)$ s.t. $X_t = (t,\sin(t))$ for all $t \in [0,1]$. Calculate $\mathbf{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2.
- (e) Let $X \in \mathcal{C}_0^1([0,1],\mathbb{R})$ and $n \in \mathbb{N}$. Calculate $\int_0^1 t^n dX_t$ when
 - 1. $X_t = t$
 - 2. $X_t = \sin(t)$

Exercise 4.2 (Ito's formula) Let W be a Brownian motion on $[0, \infty)$ and define

$$Q^{n}(W) = \sum_{i=1}^{n} (W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^{2}.$$

- (a) Prove that $Q^n(W)$ converges to 1 in \mathbb{L}^2 . Does the same property hold for a smooth (\mathcal{C}^1) function? What does this imply on the regularity of the paths of a Brownian motion W?
- (b) Prove the following convergence in L^2 sense

$$\lim_{n \to \infty} \sum_{i=1}^{n} W_{\frac{i-1}{n}}(W_{\frac{i}{n}} - W_{\frac{i-1}{n}}) = \frac{W_1^2 - 1}{2}$$

(c) Prove that if f is smooth and bounded

$$f(W_t) = f(0) + \int_0^t f'(W_s)dW_s + \int_0^t \frac{f''(W_s)}{2}ds.$$

Exercise 4.3 (Black-Scholes model) Let $\sigma > 0$, $X_t = X_0 \exp\{\sigma W_t - \frac{\sigma^2 t}{2}\}$.

(a) Prove that X is a solution of

$$dX_t = \sigma X_t dW_t.$$

(b) Let K > 0, calculate

$$C_0 = \mathbb{E}[(X_T - K)_+].$$

(c) Let K > 0, calculate

$$\frac{\partial}{\partial X_0} \mathbb{E}[(X_T - K)_+].$$

Exercise 4.4 (Options' pricing in Black-Scholes and Heston models)

- (a) Code option pricing and simulation for European call options and Digital call options in a Black-Scholes model. See exercise notebook 1.
- (b) Compare simulations based on BS and Heston model. See exercise notebook 1.

Updated: March 24, 2025