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Exercise 2.1 (Weierstrass theorem [1])

(a) Construct a sequence of polynomials converges pointwisely but not uniformly on [0, 1].

(b) Construct a sequence of polynomials converges uniformly to x 7→ |x| on [−1, 1]. (Hint:
Corollary 2.3. in [1])

(c) Prove that ReLU can be approximated uniformly by polynomials on [−1, 1].

(d) Use the universal approximation theory of shallow neural networks on [0, 1] to prove the
Weierstrass theorem.

Solution 2.1

(a) Consider the functions fn(x) = xn for x ∈ [0, 1], or the functions fn = I(0, 1
2n ).

(b) Consider the following map

pn+1(x) = pn(x) + 1
2(x − p2

n(x)), (1)

which is a contraction on [0, 1) and the special case x = 1 is obvious. For more details, we
refer to Corollary 2.3. in [1].

(c) g(x) = 1
2 (x + |x|)

(d) Since ReLU can be approximated uniformly by polynomials on [0, 1], composition of affine
function and ReLU can be uniformly by polynomials on [0, 1]. Thus, shallow neural networks
can be uniformly by polynomials on [0, 1]. Therefore, by UAT, polynomials can uniformly
approximate any continuous function on [0, 1].

Exercise 2.2 (Networks on discrete path spaces)

(a) Describe the space of paths ω : {1, . . . , T} → Rd as RdT .

(b) Describe a shallow neural network, which depends on value at time t and on path information
up to time t. Formulate a universal approximation theorem in this setting.

Solution 2.2

(a) Maps from {1, . . . , T} to Rd expressed by RdT .

(b) A neural network with input space Rdt for fixed t, a neural network with input space at least
RdT (might be larger if allow duplicated information in input space). UAT for path space is
concerning universal approximation of continuous functional on path spaces e.g. the running
max of a discrete path.

Exercise 2.3 (Linear Operators) Let K be a compact subset of Rd.
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(a) Let µ be a finite Borel measure on K. Prove that

Lµ(f) :=
∫

K

f(x)µ(dx) (2)

for f ∈ C(K,R) is a bounded linear functional.

(b) Let L be a positive linear functional on C(K,R), i.e. L(f) ≥ 0 for f ≥ 0. Prove that L is
continuous.

Solution 2.3

(a) Lµ is linear by the linearity of the integral. We need to show that Lµ is bounded. f is
bounded, as f is continuous on K and K is compact. In addition, as µ(K) < ∞, there exists
C ∈ R such that µ(K) = C. Hence

Lµ(f) =
∫

K

f(x)µ(dx) ≤
∫

K

||f ||∞µ(dx) ≤ ||f ||∞µ(K) = ||f ||∞C.

We have shown that there exists C ∈ R such that

L(f) ≤ ||f(x)||∞C, ∀f ∈ C(K,R).

So L is bounded.

(b) We start by giving a reminder of the Riesz-Markov-Kakutani representation theorem.

Theorem 1 Riesz-Markov-Kakutani representation theorem Let X be a locally compact
Hausdorff space, and L a positive linear functional on Cc(X). Then there exists a unique
positive Borel measure µ on X such that

L =
∫

X

f(x)µ(dx)

for every f ∈ Cc(X), and which has the following properties for some M containing the Borel
δ−algebra on X:

1. µ(K) < ∞ for every compact set K ⊂ X

2. For every E ∈ M , we have µ(E) = inf{µ(V ) : E ⊂ V, V open}
3. The relation µ(E) = sup{µ(K) : K ⊂ E, Kcompact} holds for every open set E, and for

every E ∈ M with µ(E) < ∞
4. If E ∈ M , A ⊂ E, and µ(E) = 0, then A ∈ M .

As L is positive linear functional, by Riesz-Markov-Kakutani representation theorem, there
exists a unique measure µ such that the functional L on f is defined as L(f) :=

∫
K

f(x)µ(dx).
Let a sequence of functions fn in C(K,R) converges uniformly to a function f ∈ C(K,R),
we have for any ϵ > 0, there exists a positive integer N such that for all n ≥ N and x ∈ K,
|fn(x) − f(x)| < ϵ. Since K is compact and f is continuous, f is also bounded on K, i.e.,
there exists a constant M such that |f(x)| ≤ M for all x ∈ K. Consequently, for all n ≥ N ,
|fn(x)| ≤ |fn(x) − f(x)| + |f(x)| < ϵ + M . This implies |fn(x)| is bounded by ϵ + M for all
n ≥ N and x ∈ K. Let gn(x) = max(|fn(x)|, |f(x)|), we can see gn is a bounded continuous
function on compact set K, hence gn is integrable. Thus we can apply dominated convergence
theorem: If fn(x) ≥ 0, fn(x) converges to f(x) pointwisely for all x ∈ K, and |fn(x)| ≤ gn(x)
for all n and x, where gn(x) is integrable, then

lim
n→∞

∫
K

fn(x)µ(dx) =
∫

K

f(x)µ(dx)
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So we have
lim

n→∞
L(fn) = L(f)

It proves L is continuous.
Other proofs are also possible, for instance recalling that a linear operator between normed
spaces is bounded if and only if it is continuous, and proceeding by contradiction.

Exercise 2.4 (Point-separating families)

(a) Let K be a compact subset of Rd. Prove that

F :=
{

C(K,R) ∋ f 7→
n∑

i=1
λif(xi) | λi ∈ R, n ∈ N, xi ∈ K, i = 1, 2, ..., n

}
(3)

is point separating and additive.

(b) Prove that

F :=
{

C1
0([0, 1],R) ∋ X 7→

n∑
i=1

λi

∫
tidXt ∈ R : ∀λi ∈ R, n ∈ N

}
is a point-separating vector space. C1

0([0, 1],R) is the space of the C1 function f on [0, 1] with
f(0) = 0.

Solution 2.4

(a) Let f and g be distinct functions in C(K,R). Since they are distinct, there must exist at least
one point x̄ such that f(x̄) ̸= g(x̄). Select now the element F ∈ F such that n = 1, λ1 = 1
and x1 = x̄. Then, F (f) ̸= F (g). The additivity on F comes from

F (f+g) =
n∑

i=1
λi(f+g)(xi) =

n∑
i=1

λif(xi)+λig(xi) =
n∑

i=1
λif(xi)+

n∑
i=1

λig(xi) = F (f)+F (g), ∀F ∈ F .

(b) Vector space holds directly from the definition. So we remain to show point-separating. Let
us consider Z ∈ C1

0([0, 1],R) s.t.∫ n∑
i=1

λit
idZt = 0, ∀λi ∈ R, n ∈ N.

An elementary approach is using universal approximation of polynomials. Since Z ′ is continu-
ous on [0, 1], it can be universally approximated by polynomials, and therefore we have∫ 1

0
(Z ′

t)2dt =
∫ 1

0
ZtdZt = lim

n→∞

∫ n∑
i=1

λit
idZt = 0. (4)

This implies that Z = 0 because it starts from 0, which completes the proof.
It worth noticing that this essentially relies on the fact that Z ′ is continuous. But we can
actually make the proof more general by considering function X which are only L-Lipschitz
and starting from 0, and then a more general proof can be done by fourier analysis. Since
sin(mπt) and cos(mπt) for all m ∈ N are uniformly approximated by polynomial on [0, 1].
We have for all m ∈ N ∫

sin(mt)dZt =
∫

cos(mt)dZt = 0 (5)
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Then we define a sign measure µ(dt) = Z ′
tdt (Because by Rademacher’s Lipschitz function is

almost everywhere differentiable and here we even know that |Z ′
t| ≤ L almost surely), then

for all m ∈ N ∫
sin(mt)dµ =

∫
cos(mt)dµ = 0. (6)

Then by fourier analysis we know µ = 0 so Z is constant, which is actually 0 because Z(0) = 0.
This proof uses the same idea used in the proof of universal approximation theory of neural
network by G. Cybenko.

Exercise 2.5 (Controlled ODEs as features on the path space) We aim to demonstrate that
controlled ODEs define (non-linear) features on a path space, which we shall fix to C1([0, T ],Rd)).
See notebook 1 for details.

Solution 2.5 See solution notebook 1.
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