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Exercise 3.1 (Hölder-continuous functions as a weighted space) Fix p ∈]0, 1] and consider
the Hölder space Cp = Cp([0, 1],Rd) of continuous function which are p-Hölder continuous, equipped
with the uniform norm ∥ · ∥∞. Denote by

∥ω∥p := |ω(0)| + sup
t ̸=s

|ω(t) − ω(s)|
|t − s|p

the Hölder norm on this space. Prove that this is a weighted space, under the topology induced by
the uniform norm, with weight function

ρ(ω) := 1 + ∥ω∥p, ∀ω ∈ Cp.

Solution 3.1 It is known that Hölder-continuous functions on a compact [0, 1] are uniformly
continuous. The uniform norm is therefore well-defined and finite for any element in Cp. Let also
notice that the case corresponds to p = 1 to Lipschitz functions.
We aim to prove that the set ER := {ω ∈ Cp : ρ(w) ≤ R} is compact in uniform norm for any R ≥ 1.
More precisely, we shall prove that is set is sequentially compact, which is an equivalent condition
in a metric space.
Consider any sequence {ωn}n ⊂ ER. The sequence is clearly uniformly uniformly equicontinuous,
since for any {x, y} ∈ [0, 1]2

|wn(x) − wn(y)| ≤ ∥ωn∥p|x − y|p ≤ R|x − y|p,

which is an upper-bound independent from n ∈ N. Furthermore, the sequence is {ωn}n is uniformly
bounded, in the sense that

|ωn(x)| ≤ |ωn(0)| + |ωn(x) − ωn(0)| ≤ 2∥ωn∥p ≤ 2R,

where the upper bound is independent from n ∈ N and from x ∈ [0, 1]. Hence, by a direct
application of Arzelà–Ascoli theorem, the sequence admits a subsequence which converges uniformly
in C([0, 1],Rd). Finally, one is left to prove that ER is closed, a property which (together with the
relative compactness just proved) would yield the result. This follows immediately from the lower
semi-continuity of ∥ · ∥p, or by the same argument which proves uniformly boundedness.

Exercise 3.2 (Controlled ODEs) Consider the controlled ODE: X0 = x ∈ R

dXθ
t = V θ(t, Xθ

t )dt, t ∈ [0, T ].

(a) Let

at = ∂Xθ
T

∂Xθ
t

.

Prove that
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at, aT = 1,

and relate at with Jt,T in the lecture notebook.
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(b) Prove that
d

dt
(∂Xθ

t

∂θ
at) = at

∂V θ

∂θ
(t, Xθ

t ),

and
∂Xθ

T

∂θ
= −

∫ 0

T

∂Xθ
T

∂Xθ
t

· ∂V θ

∂θ
(t, Xθ

t )dt.

(c) Is every feedforward neural network a discretization of controlled ODE?

Solution 3.2

(a) We know

at = ∂Xθ
T

∂Xθ
t

= ∂Xθ
T

∂Xθ
t+∆t

·
∂Xθ

t+∆t

∂Xθ
t

= at+∆t ·
∂Xθ

t+∆t

∂Xθ
t

.

(1)

Also we know
Xθ

t+∆t = Xθ
t +

∫ t+∆t

t

V θ(Xθ
s , s)ds

Taking partial derivative on both side we have

∂Xθ
t+∆t

∂Xθ
t

= 1 +
∫ t+∆t

t

∂xV θ(Xθ
s , s)ds

Plug this into (1) we have

at − at+∆t

at+∆t
=

∫ t+∆t

t

∂xV θ(Xθ
s , s)ds.

Let ∆t → 0 we obtain
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at

This ODE is known as adjoint equation, and runs backward in time (from T to 0), propagating
sensitivity information similarly to backpropagation in feed-forward neural networks. The
adjoint equation corresponds to the of J0,T , run backwards in time.

(b)

d

dt
(∂Xθ

t

∂θ
at) = d

dt
(∂Xθ

t

∂θ
) · at + dat

dt
· (∂Xθ

t

∂θ
)

= ∂

∂θ
V θ(Xθ

t , t) · at − ∂V θ

∂x
(t, Xθ

t ) · at · (∂Xθ
t

∂θ
)

= at
∂V θ

∂θ
(t, Xθ

t ).

The last equation is because:

∂

∂θ
V θ(Xθ

t , t) = ∂V θ

∂x
(t, Xθ

t ) · (∂Xθ
t

∂θ
) + ∂V θ

∂θ
(t, Xθ

t ).
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(c) Yes. A feedforward neural network is a discretization of a controlled ODE because each
layer represents a step in a discretized time-evolution equation, approximating a continuous
transformation in the limit when the number L of layers goes to infinity. Neural ODEs
explicitly formulate this continuous perspective. Similarly, the sensitivity analysis of the
adjoint equation can be seen as a continuous-time counterpart of backpropagation in neural
networks.

Exercise 3.3 (Solution of CODEs as features) This exercise exemplifies how, for any input
curve u, the solution of the associated controlled ODE (CODE) is a (non-trivial) feature of u.
Consider any control u ∈ C1([0, 1],R) and define for t ∈ [0, 1] the linear CODE

dXt = (λXt + ut)dt, X0 = x

where λ ∈ R.

(a) Solve the system for a generic u ∈ C1([0, 1],R).

(b) Explicitly compute the solution for u = sin.

Solution 3.3

(a) Multiplying on both sides by e−λt, we can rewrite the equation as

d
dt

(e−λtXt) = e−λtut, X0 = x.

Integrating, we obtain

e−λtXt = X0 +
∫ t

0
e−λsusds.

Hence, the explicit solution to the equation is give by

Xt = xe−λt +
∫ t

0
eλ(t−s)usds

From a more abstract perspective, we have describe the map u → Xλ
t (u). Interestingly, this

map does not depend directly on the feature u, but on its Laplace transform, which is indeed
used frequently to approximate a path as a feature.

(b) In case u = sin, we can directly compute the integral via integration by parts, obtaining∫ t

0
eλ(t−s)usds = eλt − λ sin(t) − cos(t)

λ2 + 1 = eλt − λut − u′
t

λ2 + 1 .

Exercise 3.4 (Dependence of a non-linear ODE on the starting value) For t ∈ [0, 1],
consider the ODE

dXt = sin(Xt)dt, X0 = x

Compute the value of ∂xXt in two different ways, respectively

(a) by direct calculation;

(b) using the operator Js,t introduced in the lecture notebook.

Solution 3.4
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(a) The ODE admits a unique solution, which is also explicit. Notably, by the method of
separation of variables, we may compute

Xt = 2 arctan
(

et
∣∣∣tan

(x

2

)∣∣∣)
Directly computing its derivative with respect to x, one obtains (making use of some trigono-
metric equalities),

∂xXt =
et sec2 (

x
2
)

1 + e2t tan2 (
x
2
) .

(b) We proceed instead with the approach outline in the lecture notebook. The evolution operator
Js,t corresponds to the derivative of Xt with respect to Xs = x. It satisfies the equation

dJs,t = sin′(Xt)Js,tdt = cos(Xt)Js,tdt, Js,s = 1.

Using the explicit expression of Xt, we may recast this equation as

dJs,t = 1 − e2t tan2(x/2)
1 + e2t tan2(x/2)

Js,tdt, Js,s = 1.

This is a separable equation, which can be explicitly solved. In the case s = 0 previously
considered, the solution of the separable equation is

∂xXt = J0,t =
et sec2 (

x
2
)

1 + e2t tan2 (
x
2
) ,

which is consistent with the direct approach of the previous point.
Notably, this exercise shows that a (typically hard) operation as computing the sensitivity
with respect to a parameter can be recasted in solving a linear equation. Exactly as in a
neutral network, the first step is to solve first the equation forward and compute Xt.
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