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Exercise 4.1 (Signatures) Through this exercise, we let E = Rd, J an interval on R, and
denote SigJ : C1

0(J, E) → T(E) the signature map such that for all X ∈ C1
0(J, E) and we let Sig(M)

J

denote the truncated signature map up to order M : Sig(M)
J (X) = (1, s1, · · · , sM ) ∈ T(M)(E). Let

X ∈ C1
0([0, s], E) and Y ∈ C1

0([s, t], E).

(a) Let Xt = tx ∈ Rd for all t ∈ [0, 1]. Calculate Sig[0,1](X).

(b) Let X ∈ C1
0([0, T ], E) and X0 = 0. Prove that

Sig[0,1](X)1,2 + Sig[0,1](X)2,1 = Sig[0,1](X)1 · Sig[0,1](X)2.

(c) Let X ∈ C1
0([0, 1],R) s.t. Xt = sin(t) for all t ∈ [0, 1]. Calculate Sig(2)

[0,1](X) i.e. the signatures
of X up to order 2.

(d) Let X ∈ C1
0([0, 1],R2) s.t. Xt = (t, sin(t)) for all t ∈ [0, 1]. Calculate Sig(2)

[0,1](X) i.e. the
signatures of X up to order 2.

(e) Let X ∈ C1
0([0, 1],R) and n ∈ N. Calculate

∫ 1
0 tndXt when

1. Xt = t

2. Xt = sin(t)

Solution 4.1

(a)

Sig[0,1](X) = (1, x,
x⊗2

2! , · · ·). (1)

(b) By integration by part, we directly show the equality∫ 1

0
u

(1)
t du

(2)
t +

∫ 1

0
u

(2)
t du

(1)
t =

∫ 1

0
d(u(1) · u(2))t = u

(1)
1 · u

(2)
1 (2)

(c) (
1, sin(1),

∫ 1

0
sin(t) cos(t)dt

)
(3)

(d) (
1, 1, sin(1), 1

2 ,

∫ 1

0
sin(t)dt,

∫ 1

0
t cos(t)dt,

∫ 1

0
sin(t) cos(t)dt

)
(4)

(e) 1.
tn+1

n + 1

∣∣∣1

0
(5)
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2. ∫ 1

0
tnd sin(t) = sin(t)tn

∣∣∣1

0
+

∫ 1

0
ntn−1d cos(t)

= sin(t)tn
∣∣∣1

0
+

∫ 1

0
ntn−1d cos(t)

= sin(t)tn
∣∣∣1

0
+ n cos(t)tn−1

∣∣∣1

0
−

∫ 1

0
n(n − 1)tn−2d sin(t)

= . . .

(6)

Exercise 4.2 (Ito’s formula) Let W be a Brownian motion on [0, ∞) and define

Qn(W ) =
n∑

i=1
(W i

n
− W i−1

n
)2.

(a) Prove that Qn(W ) converges to 1 in L2. Does the same property hold for a smooth (C1)
function? What does this imply on the regularity of the paths of a Brownian motion W?

(b) Prove the following convergence in L2 sense

lim
n→∞

n∑
i=1

W i−1
n

(W i
n

− W i−1
n

) = W 2
1 − 1
2

(c) Prove that if f is smooth and bounded

f(Wt) = f(0) +
∫ t

0
f ′(Ws)dWs +

∫ t

0

f ′′(Ws)
2 ds.

Solution 4.2

(a)

E
[( n∑

i=1
(W i

n
− W i−1

n
)2 − 1

)2]
= Var(

n∑
i=1

(W i
n

− W i−1
n

)2)

=
n∑

i=1
Var((W i

n
− W i−1

n
)2)

= n(E(W 4
1
n

) − 1
n2 )

= n( 3
n2 − 1

n2 ) → 0 as n → ∞

The same property does not hold true for any C1 process X, since the element Qn(X) always
converges to 0 (pathwise) as n → ∞. This is a consequence of the fact that a C1 function is
in particular of bounded variation on any interval as such [0, 1]. A notable consequence is
that the Brownian motion is not BV (and therefore not C1) on any interval [0, T ].

(b) We notice first that

2W i−1
n

(W i
n

−W i−1
n

) = (W i
n

+W i−1
n

)(W i
n

−W i−1
n

)−(W i
n

−W i−1
n

)2 = W 2
i
n

−W 2
i−1

n

−(W i
n

−W i−1
n

)2.
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(c) Ito’s formula, here presented in its integral version, follows naturally from the properties of
the Brownian motion outlined in the two previous points. In particular, point (b) implies
directly that

W 2
1 = 1 +

∫ 1

0
2WsdWs,

which is Ito’s formula for f = (·)2 and t = 1. The extension to any smooth f is a bit technical,
but straightforward. Details can be found, for instance, in Theorem 3.3 of [1].

Exercise 4.3 (Black-Scholes model) Let σ > 0, Xt = X0 exp{σWt − σ2t
2 }.

(a) Prove that X is a solution of
dXt = σXtdWt.

(b) Let K > 0, calculate
C0 = E[(XT − K)+].

(c) Let K > 0, calculate
∂

∂X0
E[(XT − K)+].

Solution 4.3

(a) One can directly check that

dXt = d[X0 exp(σWt − σ2t

2 )] = X0d[exp(σWt − σ2t

2 )]

= X0 exp(σWt − σ2t

2 )(σdWt + 1
2∂2

t Wtdt − σ2dt

2 )

= σXtdWt.

(b) Applying Black-Scholes formula, we have

C0 = X0Φ(d1) − KΦ(d2) (7)

where

d1 =
log( X0

K ) + σ2

2 T

σ
√

T
, d2 = d1 − σ

√
T .

Proving Black-Scholes formula is elementary, but requires some calculations. One has to
notice first that σWT − σ2T

2 ∼ N
(

− σ2T
2 , σ2T

)
. Notably, XT is a log-normal random variable.

A similar variable admits an explicit probability density function fXT
= fT . Hence, we may

rewrite
E[(XT − K)+] =

∫
R
(x − K)+fT (x)dx =

∫ ∞

K

(x − K)fT (x)dx.

The rest of the calculations is left as an exercise. It may be useful to recall that, if Φ is the
cumulative distribution function of a standard Gaussian random variable, Φ(−x) = 1 − Φ(x)
for any x ∈ R.

(c)
∂

∂X0
E[(XT − K)+] = ∂

∂X0
(X0Φ(d1) − KΦ(d2)) = ϕ(d1)

Exercise 4.4 (Options’ pricing in Black-Scholes and Heston models)
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(a) Code option pricing and simulation for European call options and Digital call options in a
Black-Scholes model. See exercise notebook 1.

(b) Compare simulations based on BS and Heston model. See exercise notebook 1.

Solution 4.4

(a) See solution notebook 1.

(b) See solution notebook 1.
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