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Exercise 5.1 (Self financing portfolio) Recall the definition of self financing trading strategy ξ
and its associated discounted value process V = (Vt)t=0,...,T is given by

V0 := ξ1 · X0 and Vt := ξt · Xt for t = 1, . . . , T.

The gains process associated with ξ is defined as

G0 := 0 and Gt :=
t∑

ξk · (Xk − Xk−1) for t = 1, . . . , T

(a) Prove ξt · Xt = ξt+1 · Xt for t = 1, ..., T − 1.

(b) Prove Vt = V0 + Gt = ξ1 · X0 +
∑t

k=1 ξk · (Xk − Xk−1) for all t.

Solution 5.1

(a) By definition we have
ξt · St = ξt+1 · St for t = 1, ..., T − 1,

St is the price of the asset at time t. By dividing both sides by S0
t , we can prove ξt·Xt = ξt+1·Xt

for t = 1, ..., T − 1.

(b) Since (a) holds, we have

ξt+1 · Xt+1 − ξt · Xt = ξt+1 · Xt+1 − ξt+1 · Xt = ξt+1 · (Xt+1 − Xt)

for t = 1, ..., T − 1, and it’s identical to (b).

Exercise 5.2 (Backpropogation of neural network) Let θ = (w, b, a) ∈ R3 and let σ be the
activation function. We consider the shallow neural network fθ:R → R s.t.

fθ(x) = aσ(wx + b).

Then we solve the regression problem with 3 data point (xi, yi) ∈ R2, i = 1, 2, 3 by minimizing the
L2 loss

Lf =
∑

i=1,2,3
(fθ(xi) − yi)2

.

(a) When solving the regression, do we compute ∇x0Lf or ∇θLf ?

(b) Compute ∂wf and ∂bf by chain rule. Do you find any intermediate value computed twice in
both ∂wf and ∂bf?

(c) Consider regression problem as a constrained optimization problem

min
∑

i=1,2,3
li

li = (ỹi − yi)2

ỹi = aσ(zi), i = 1, 2, 3.

zi = wxi + b

Solve it by Lagrange multiplier and relate this with backpropagation.

Updated: March 27, 2025 1 / 3



Mathematics for New Technologies in Finance, FS 2025 Solution sheet 5

(d) Generalize this idea to deep neural networks.

Solution 5.2

(a) ∇θLf .

(b) Let z = wx0 + b then

∂wLf = ∂zLf · x0 = (aσ(w0x + b) − y0)σ′a(wx0 + b)x0,

∂bLf = ∂zLf · 1 = (aσ(wx0 + b) − y0)aσ′(wx0 + b)

(c) Consider the Lagrangian

L = l − λl(l − (y − y0)2) − λy(y − aσ(z)) − λz(z − (wx0 + b))

Compute the gradient

∂lL = 1 − λl

∂yL = λl
∂(y − y0)2

∂y
− λy

∂zL = λy
∂aσ(z)

∂z
− λz

∂wL = λz
∂(wx0 + b)

∂w

∂bL = λz
∂(wx0 + b)

∂b

Lettin ∇L = 0, we get exactly the backpropagation formula.

(d) See [1].

Exercise 5.3 (Backpropagation and cODEs) Translate a one layer neural network to a
controlled ODE:

L(i) : x 7→ W (i)x + a(0) 7→ ϕ(W (1)x + a(0)),

with a cadlag control u(t) = 1[1,2)(t) + 2[2,∞)(t) and a time-dependent vector field

V (t, x) = 1[0,1)(t)
(

L(0)(x) − x
)

+ 1[1,∞)(t)
(

L(1)(x) − x
)

.

The corresponding neural network at ’time’ 3 is

x 7→ L(0)(x) 7→ ϕ(W (1)L(0)(x) + a(1)).

(a) What is the evolution operator Js,3?

(b) Calculate the derivative of the network with respect to parameters W (1) and a(1).

Solution 5.3

(a) Js,3v = v + 1[0,1[(s)
(
dL(1) (Xs−) dL(0)(x)v − v

)
+ 1[1,2[(s)

(
dL(1) (Xs−) v − v

)
(b)

∂V

∂W (1) = 1[0,1)(t)
∂L(0)

∂W (1) +1[1,∞)(t)
∂L(1)

∂W (1) = 1[1,∞)(t)
∂L(1)

∂W (1) = 1[1,∞)(t)W (1) ∂

∂W (1) ϕ(W (1)x+a(1)).
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Similarly,
∂V

∂a(1) = 1[1,∞)(t)W (1) ∂

∂a(1) ϕ(W (1)x + a(1)).

Since we have

∂Xθ
T =

d∑
i=1

∫ T

0
Js+,T ∂V θ

i

(
s−, Xθ

s−
)

dui(s)

We have

∂XW (1)

3 =
d∑

i=1

∫ 3

1
Js+,3

∂V

∂W (1) dui(s) and ∂Xa(1)

3 =
d∑

i=1

∫ 3

1
Js+,3

∂V

∂a(1) dui(s)

Exercise 5.4 (Hedging) See notebook 1.

Solution 5.4 See solution notebook 1.

Exercise 5.5 (Path-depedent derivatives in a BS market) See notebook 2.

Solution 5.5 See solution notebook 2.
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