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Exercise 6.1 (Portfolio optimization) See notebook 1.

Solution 6.1 See notebook 1.

Exercise 6.2 (Optimal portfolio allocation) Consider the Merton’s optmization problem
outlined in lecture notebook 5. Define the set of admissible controls as A = H2, that is to say the
set of F-adapted processes such that E

[∫ T

0 |αs|2ds
]

< +∞. Fix also the parameters {r, µ, σ} ∈ R3
+.

Define, for γ ∈ (0, 1), the the CRRA (Constant Relative Risk Aversion) function u = (·)γ −1
γ . The

limit case γ = 0 corresponds to u = log. We aim to solve the optimization problem

Ṽ (t, x) := sup
α∈A

E[u(Xα,t,x
T )],

where the process Xα,t,x starts at time t with initial value x.

(a) Write down explicitly the dynamics of the wealth process Xα.

(b) Define
V (t, x) := sup

α∈A
E[(Xα,t,x

T )γ ],

and notice that Ṽ (t, x) = V (t,x)−1
γ . Verify that the value function V solves the following PDE,

known as dynamic programming equation:

∂w

∂t
(t, x) = − sup

a∈R

[
(r + (µ − r)a)x∂w

∂x
(t, x) + 1

2σ2a2x2 ∂2w

∂x2 (t, x)
]

w(T, x) = xγ

(1)

(c) Using the ansatz V (t, x) = xγh(t), reduce 1 to an ODE and solve it explicitly. Deduce the
optimal Merton’s ratio α⋆, the explicit expression of V and the one of Ṽ .

Solution 6.2
(a)

dXα
t = αtXt

dSt

St
+ (1 − αt) Xt

dS0
t

S0
t

= [r + (µ − r)αt] Xtdt + σαtXtdWt.

(2)

(b) This is a classical problem in stochastic control, associating a deterministic equation (PDE)
to the value function of a control problem, given the payoff E[(Xα,t,x

T )γ ] and the dynamics 2.
A derivation of the Hamilton-Jacobi-Bellman equation, which is essentially a consequence
of the dynamic programming principle, can be found in Chapters 2 and 4 of [1]. We will
not delve too much in details here, but point out that the PDE, in case A is reduced to a
singleton, boils down to the celebrated Feynman–Kac formula.

(c) Using the suggested ansatz, we write v(t, x) = xγh(t). Equation 1 is reduced to

0 = h′ + γh sup
a∈R

{
r + (µ − r)a + 1

2(γ − 1)σ2a2
}

,

h(T ) = 1.
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It is easy to compute the optimal a⋆, which is

a⋆ = µ − r

(1 − γ)σ .

The ODE is then reduced to

0 = h′ + γh

[
r + 1

2
(µ − r)2

(1 − γ)σ2

]
,

h(T ) = 1.

This leads to the unique candidate:

h⋆(t) := ek(T −t) with k := γ

[
r + 1

2
(µ − r)2

(1 − γ)σ2

]
.

We have now constructed a solution v to equation 1, but a priori it may not coincide with V .
Indeed, we only know that V is also a solution to 1. By a verification argument (see Chapter
4 of [1]), we can indeed conclude that V (t, x) = v(t, x) = h⋆(t)x. We recall Ṽ (t, x) = V (t,x)−1

γ .
Finally, the Merton’s ratio does not depend on time and it is given as follows:

α⋆
t = a⋆ = µ − r

(1 − γ)σ , ∀t ∈ [0, T ].

Exercise 6.3 (Convergence of norms) Consider a measure space (Ω, M, σ) and a measurable
function f : Ω → R, with f ∈ Lp(Ω) ∩ L∞(Ω) for some 0 < p < +∞.

(a) Prove that limq→+∞∥f∥q= ∥f∥∞.

(b) If we do not assume explicitly that f ∈ Lp(Ω), the statement may not hold anymore. Under
which other assumption the statement is true, without directly assuming f ∈ Lp(Ω)?

Solution 6.3

(a) If ∥f∥∞= 0, the proposition holds trivially. Otherwise, fix ϵ > 0 and Sϵ := {x : |f(x)|≥
∥f∥∞−ϵ}, for ϵ < ∥f∥∞. This set has positive measure (by definition of ∥·∥∞) and, by the
fact that f ∈ Lp(Ω), its measure is finite. Indeed,

∞ > ∥f∥p⩾

(∫
Sϵ

(∥f∥∞−ϵ)p
dµ

)1/p

= (∥f∥∞−ϵ) µ (Sϵ)1/p
.

We now use the same estimate, but for a generic q > 0. We send first q → +∞, leading to
lim infq→+∞∥f∥q≥ (∥f∥∞−ϵ), and finally, sending ϵ ↘ 0, we get

lim inf
q→+∞

∥f∥q≥ ∥f∥∞.

For the converse inequality, we recall that |f(x)|≤ ∥f∥∞ for almost every x. Then, for q > p,

∥f∥q⩽

(∫
X

|f(x)|q−p|f(x)|pdµ

)1/q

⩽ ∥f∥
q−p

q
∞ ∥f∥p/q

p .

Notice that, by assumption, all the elements on the right-hand side are finite. The required
inequality is obtained once we send q → +∞.

(b) Take Ω = R, M = B(R), and µ = Leb(R). Then, f ≡ 1 gives the counterexample. One may
assume that µ(Ω) < +∞; this assumption, together with f ∈ L∞(Ω), implies f ∈ Lp(Ω) for
any p ≤ +∞.
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Exercise 6.4 (Bayesian optimization)

(a) Recall the definition of prior, likelihood, posterior, and evidence distributions in Bayesian
statistics.

(b) Consider linear model on R : Y ∼ θX + Z, θ ∼ N (0, 1), Z ∼ N (0, 1) and θ independent with
X. Compute pθ(y | x) and p(θ | x, y). Prove that maximizing the posterior p(θ | x, y) is
exactly doing Ridge regression (fix λ here).

(c) Consider Lasso regression, what is the prior under Bayesian perspective? Please calculate the
posterior under this prior.

(d) Would you expect a sparser weight or denser weight using Lasso regression instead of Ridge
regression.

Solution 6.4

(a) Assume that we want to infer the distribution of X, which depends on a unknown parameter
θ. We call π = π(θ) the prior distribution on the parameter θ, which corresponds to the initial
guess on the parameter, before inferring on it based on the realization of X. Notice we assume
that all the distributions we work with admit a density. The likelihood fθ = fθ(x) corresponds
to the distribution of X, given θ. In particular, we notice that the joint distribution of
(X, θ) can be express as fθ(x)π(θ)dxdθ. Finally, the evidence corresponds to the marginal
distribution f = f(x) of X, while the posterior π(θ|x) to the distribution of θ given the
realization X = x. By Bayes’ theorem, we have

π(θ|x) = fθ(x)π(θ)
f(x) = fθ(x)π(θ)∫

Θ fθ(x)π(θ)dθ
.

(b) See the proof here.

(c) Suppose we have data points yi = β0 +
∑p

j=1 βjxij + ϵi. where ϵi ∼ N
(
0, σ2). The likelihood

for the data is

L(Y | X, β) =
n∏

i=1

1√
2πσ

exp
(

− ϵ2
i

2σ2

)
=
(

1√
2πσ

)n

exp
(

− 1
2σ2

n∑
i=1

ϵ2
i

)
We select the prior for β to follow the Laplace distribution (also known as double-exponential
distribution) with a zero mean and common scale parameter b : π(β) = (1/2b) exp(−|β|/b).
Multiplying the prior distribution with the likelihood we get the posterior distribution

L(Y | X, β)π(β) =
(

1√
2πσ

)n

exp
(

− 1
2σ2

n∑
i=1

ϵ2
i

)[
1
2b

exp
(

−|β|
b

)]
.

Notice that this proof corresponds exactly to the one of previous point, once we change the
prior distribution accordingly.

(d) We recall first, given the linear model Y = θX + Z, where Z ∼ N (0, I), Ridge and Lasso
regression correspond to minimizing, respectively,

θ⋆
R := arg minθ∈Θ∥Y − Xθ∥2

2+λR∥θ∥2;
θ⋆

L := arg minθ∈Θ∥Y − Xθ∥2
2+λL∥θ∥1,

where λR and λL are scaling parameters. If now Θ = Rd, it can be proved that there exists
two parameters KR and KL such that

θ⋆
R = arg min∥θ∥2≤KR

∥Y − Xθ∥2
2;

θ⋆
L = arg min∥θ∥1≤KL

∥Y − Xθ∥2
2.
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The shape of balls in ∥·∥1-norm explains now why the Lasso regularization induces sparsity
in the weight θ (in the sense that more components of θ are null), compared to the Ridge
penalization.

Exercise 6.5 (Stochastic gradient descent)

(a) Assume that we aim to find the θ∗ to maximize the posterior:

p(θ|x1, · · · , xn) =
p(θ)

∏n
i=1 p(xi|θ)

p(x1, · · · , xn)

with stochastic gradient descent method in practice. In each step, do we calculate ∇p(θ|x1, · · · , xn)?
do we calculate ∇ log p(θ|x1, · · · , xn)? do we calculate ∇ log p(θ) or ∇ log p(xi|θ)?

(b) If p(x1, · · · , xn) has no closed formula, does it cause a trouble when we do stochastic gradient
descent?

(c) Construct a stochastic differential equation with invariant measure to be the posterior
distribution p(θ|x1, · · · , xn).

Solution 6.5

(a) In stochastic gradient descent, one updates the parameter subject to

θ[t+1] = θ[t] − δ∇θLX(θ[t]).

Hence, the optimization boils down to the study of the posterior p(θ|x1, · · · , xn). The usage
of the log does not change the optimization, but allows to decouple the terms. In particular,

sup
θ∈Θ

p(θ|x1, · · · , xn) = sup
θ∈Θ

log p(θ|x1, · · · , xn) = sup
θ∈Θ

[
log p(θ) +

n∑
i=1

log p(xi|θ) − log p(x1, · · · , xn)
]

.

(3)
In particular, we only have to calculate ∇ log p(θ) and ∇ log p(xi|θ).

(b) It is clear from 3 that log p(x1, · · · , xn) is only a scaling term, which does not affect the
optimization process.

(c) See lecture notebook 3.
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