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Exercise 9.1 (Local volatility and local stochastic volatility models) Assume to be working
under the pricing measure.

(a) In Exercise 7.4, we have introduced the class of local volatility model

dSt = σ(t, St)StdWt,

and proved Dupire’s formula. Is it true that a local volatility model using σDupire can be
perfectly calibrated to all the European call options in the market? Is the same true for the
classical Black-Scholes model?

(b) Consider now the stochastic local volatility model

dSt = αtl(t, St)StdWt,

which includes a local volatility component in a stochastic volatility model. The process α is
typically a diffusion process correlated with S, whose dynamics varies from model to model.
Prove that, if such a model is required to perfectly calibrate European call options, it must
satisfy

l(t, x) = σDupire(t, x)√
E[α2

t |St = x]
, (t, x) ∈ [0, +∞)2. (1)

Hint: Have a look at Gyöngy’s mimicking Theorem [1]

Solution 9.1

(a) Dupire’s formula ensures that we can build a Markovian model which can perfectly calibrate
any European call option, in the sense that, if one chooses as σ(t, x) the map σDupire derived
from Dupire’s formula and defines the local volatility model

dSDup
t = σDupire(t, SDup

t )SDup
t dWt,

it holds that
c(T, K) = E[(SDup

T − K)+], ∀(T, K) ∈ [0, +∞)2, (2)

where c(T, K) is the price of an European call from the market. This is a direct consequence
of Breeden-Litzenberger formula (see Exercise 7.3): the knowledge call option prices provides
us exactly with the knowledge of the marginal distribution of any model St which has to be
perfectly calibrated, for any t ≥ 0. Hence, SDup is the only local volatility model perfectly
calibrated to all the European call options on the market. It should be noted that this
does not imply that SDup is, in general, the only model able to perfectly calibrate all the
European calls. Indeed, the knowledge of the marginals does not imply the knowledge of the
full distribution of S. Hence, there could exists other models, non Markovian, with the exact
same marginals, and hence perfectly able to replicate call options as in 2.
Classical Black-Scholes model can not replicate all European calls: a simple way to motivate
this is to notice that BS is a special case of local volatility dynamics, where however σ is
a constant and does not (in real-world scenarios) coincide with σDupire. Broadly speaking,
σ(t, x) needs to be a whole function, not a fixed constant, in order to have the required
calibrating ability.
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(b) We have highlighted above that any model which aims to perfectly calibrate any European
call, in the sense of (2), must have the same marginal distribution of SDup

t , for any t ≥ 0.
The question on the existence of a Markovian diffusion process with the same marginals of a
given process S was solved by Gyöngy’s mimicking Theorem, [1]: the volatility A(t, x) of the
Markovian mimicking process has to satisfy

A(t, x) =
√

E[α2
t l(t, St)2S2

t |St = x], (t, x) ∈ [0, +∞)2.

We have already highlighted that the only Markovian model able to perfectly calibrate
on European calls is SDup. Hence, it must hold that A(t, x) = xσDupire(t, x), for any
(t, x) ∈ [0, +∞)2. The theorem prescribes therefore that the following, additional condition
must hold for S.

x2σ2
Dupire(t, x) = E[α2

t l(t, St)2S2
t |St = x] = l(t, x)2x2E[α2

t |St = x], ∀(t, x) ∈ [0, +∞)2,

which directly implies 1. In essence, this relationship tells us that one has "only" to project
the volatility process α on the information generated by the current value St of the asset in
order to obtain perfect calibration. Finally, it should be noted that the newly generated SDE

dSt = αt√
E[α2

t |St]
σDupire(t, St)StdWt, t ∈ [0, T ],

is inherently hard, being a non-linear SDE with McKean–Vlasov dynamics. Even ensuring the
existence of a unique solution to such an equation is a very hard task, for general volatility α.

Exercise 9.2 (Calibrating local stochastic volatility models via NNs) In Exercise 1 we have
presented the theoretical material required to calibrate a LSV model to the price of European call
options. One should however notice that computing l = l(t, x) is not as straightforward as in a local
volatility model: one has to use particle methods to deal with the derived McKean-Vlasov SDE. A
different approach, inspired by the deep-hedging methodology, is outlined in lecture notebook 6.
Taking inspiration from that, write a code which calibrates a LSV model to the price of European
calls via neural networks.

Solution 9.2 See solution notebook 1.

Exercise 9.3 (Stratonovich-Taylor expansion) Consider the scalar stochastic differential
equation

Xt = X0 +
d∑

i=0

∫ t

0
Vi(Xs) ◦ dW i

s , (3)

where by notation dW 0
t = dt, {W 1, . . . , W d} are independent Brownian motions, the integrals are

taken in the Stratonovich sense and {V 0, . . . , V d} are C2.
(a) Consider a scalar, C2 function f . Derive from Ito’s formula that

f(Xt) = f(X0) +
∫ t

0
f ′(Xs) ◦ dXs := f(X0) +

d∑
i=0

∫ t

0
f ′(Xs)Vi(Xs) ◦ dW i

s .

(b) Assume that f is C∞. Define the transport operator Vif(x) := f ′(x)Vi(x), for any x ∈ R.
Define W = (W 0, W 1, . . . , W d). Prove more in general that for any M ∈ N,

f(Xt) = f(X0) +
M∑

k=1

∑
w∈W
|w|=k

Vi1 . . . Vik
f(X0)Sigw

[0,t](W) + RM+1(t, f), (4)

where RM+1 is a residual term of order M + 1 (dependent on f and t), w = (i1, . . . , ik) and
W = {0, . . . , d}k.
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(c) Consider the explicit dynamics

Yt = Y0 +
∫ t

0
◦dBs,

and f(y) = yp, p ∈ N. Compute explicitly f(Yt) at the second order and provide the general
form.

(d) Do as in the previous point, with

Yt = Y0 +
∫ t

0
aYsds +

∫ t

0
bYs ◦ dBs,

where {a, b} ∈ R2 are constants.

Solution 9.3

(a) Let h be a C2 function; we recall first that Ito and Stratonovich integrals can be related to
each other as follows:∫ t

0
h(Xs) ◦ dBs =

∫ t

0
h(Xs)dBs + 1

2

∫ t

0
h′(Xs)h(Xs)ds, (5)

where the integral on the right-hand side is taken in Ito’s sense. Hence, we can rewrite

Xt = X0 +
∫ t

0
V0(Xs)ds +

d∑
i=1

∫ t

0
Vi(Xs)dW i

s + 1
2

d∑
i=1

∫ t

0
V ′

i (Xs)Vi(Xs)ds,

Applying Ito’s formula, we obtain

f(Xt) =f(X0) +
∫ t

0
f ′(Xs)V0(Xs)ds + 1

2

d∑
i=1

∫ t

0
f ′(Xs)V ′

i (Xs)Vi(Xs)ds

+
d∑

i=1

∫ t

0
f ′(Xs)Vi(Xs)dW i

s + 1
2

d∑
i=1

∫ t

0
f ′′(Xs)(Vi)2(Xs)ds.

One has simply to recognize that the relationship between Ito and Stratonovich integral
implies that, for any i ∈ {1, . . . , d},∫ t

0
f ′(Xs)Vi(Xs)◦dW i

s =
∫ t

0
f ′(Xs)Vi(Xs)dW i

s+1
2

∫ t

0
[f ′(Xs)V ′

i (Xs)+f ′′(Xs)Vi(Xs)]Vi(Xs)ds

to conclude. Let us now comment briefly on the differences between Ito and Stratonovich
integrals.

• Stratonovich integral, contrary to Ito, offers a Taylor-like expansion, which does not
require correction terms. This property is actually true as long as the integrand does not
have jumps. For instance, in case of a generic Lévy process with jumps, even Stratonovich
integral requires some correction terms in a similar expansion.

• Stratonovich integral does not preserve the martingale (or local martingale) property,
even when the integrator is a Brownian motion, as we immediately see from (5). This
is due to the fact that, in its infinitesimal derivation, Stratonovich integral is forward
looking, in the sense that integral at time t requires looking at time t + ϵ, for ϵ > 0
small. Such a property, which is very relevant for simulations, is not indicate for financial
applications. Notice that in the limit, this forward-looking property is not present, as we
see from (5). For this reason, Ito’s integral, whose integral does not look in the future,
is much more commonly used in Financial Mathematics.
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• Stratonovich integral requires more integrability in the integrand, compare to Ito, where
only predictability is needed. In this sense, Ito’s integration theory is applicable to a
wider class of processes.

(b) This is a direct consequence of the previous result, simply iterated. We have first

f(Xt) = f(X0) +
d∑

i=0

∫ t

0
Vif(Xs) ◦ dW i

s .

One can now expand the term Vif(Xs) = Vif(X0) +
∑d

j=0
∫ s

0 VjVif(Xu) ◦ dW j
u , leading to

f(Xt) = f(X0) +
d∑

i=0
Vif(X0)

∫ t

0
◦dW i

s + R2(t, f),

where R2(t, f) :=
∑d

i=0
∑d

j=0
∫ t

0
∫ s

0 VjVif(Xu) ◦ dW j
u ◦ dW i

s . Iteratively,

f(Xt) = f(X0) +
M∑

k=1

∑
w∈W
|w|=k

Vi1 . . . Vik
f(X0)

∫ t

0
. . .

∫ t2

0
◦dW i1

t1
. . . ◦ dW ik

tk
+ RM+1(t, f),

0 ≤ t1 ≤ . . . ≤ tl ≤ t, which is exactly the required equation.

(c) By point (a),

Y p
t = Y p

0 + p

∫ t

0
Y p−1

s ◦ dBs = Y p
0 + pY p−1

0

∫ t

0
◦dBs + p(p − 1)

∫ t

0

∫ s

0
Y p−2

u ◦ dBu ◦ dBs

And, in general, if we assume p ≥ M ,

Y p
t = Y p

0 +
M∑

k=1

p!
(p − k)!Y

p−k
0 Sig(1)⊗k

[0,t] (B) + RM+1(t, f). (6)

Notice that in this case W = {1}d, and hence for each length k, there is only one possible
word, which we indicate as (1)⊗k. As a comment, let us highlight that this formula was indeed
expected: by (5),

∫ t

0 ◦dBs = Bt. Hence, we can actually compute

Y p
t = (Y0 + Bt)p = Y p

0 +
M∑

k=1

p!
(p − k)! k!Y

p−k
0 Bk

t .

One exactly recovers (6) since it is possible to iteratively prove that

Sig(1)⊗k

[0,t] (B) = Bk
t

k! ,

when the integral is taken in Stratonovich sense.

(d) Again by point (a),

Y p
t =Y p

0 +
∫ t

0
apY p

s ds +
∫ t

0
bpY p

s ◦ dBs

=Y p
0 + apY p

0

∫ t

0
ds + bpY p

0

∫ t

0
◦dBs

+ (ap)2
∫ t

0

∫ s

0
Y p

u duds + abp2
∫ t

0

∫ s

0
Y p

u ◦ dBuds

+ abp2
∫ t

0

∫ s

0
Y p

u du ◦ dBs + (bp)2
∫ t

0

∫ s

0
Y p

u ◦ dBu ◦ dBs.

Updated: May 19, 2025 4 / 5



Mathematics for New Technologies in Finance, FS 2025 Solution sheet 9

More generally, we can write

Y p
t = Y p

0 +
M∑

k=1

∑
w∈W
|w|=k

pka#0(w)bk−#0(w)Y p
0 Sigw

[0,t](W) + RM+1(t, f).

In this case, W = {0, 1}d, and #0(w) counts the number of zeros in the word w.

Exercise 9.4 (Signatures and reservoirs computing)

(a) Consider a process X with dynamics (3). The same assumptions of Exercise 9.3 are made.
Prove that

Xt = ⟨R, Sig[0,t](W)⟩X0, (7)

and express the readout R in terms of (Vi)d
i=0.

(b) Relate (7) with reservoirs computing.

Solution 9.4

(a) This is an immediate consequence of equation (4). We simply set f = id and send M → ∞,
to obtain

Xt = X0 +
∞∑

k=1

∑
w∈W
|w|=k

Vi1 . . . Vik
X0Sigw

[0,t](W),

which is exactly the requested equation, written in a more explicit form.

(b) The solution of any stochastic differential equation can be express via an universal, dynamical
reservoir, namely Sig[0,t](W), dependent only on the driving path W (but not on X itself)
and a linear readout R. The latter depends on X0 and on the vector field (Vi)d

i=0. This is
very similar to classical reservoir computing, where one fixes the reservoir (usually a large,
random recurrent neural network) and then only train a single linear layer that reads off the
quantities of interest. The reservoir Sig[0,t](W) is also "universal", in the sense that changing
the readout R (or equivalently the vector field (Vi)d

i=0), one can recover the dynamics of any
SDE X driven by W.

Exercise 9.5 (Indifference pricing via deep hedging) We aim to compute the indifference
price of an European call option in Heston model. There are at least 2 options: (a) Montecarlo
runs, (b) deep-hedging approach. Produce a code comparing the two approaches.

Solution 9.5 See solution notebook 2.
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