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Abstract. We study the local equation of energy for weak solutions of three-dimensional
incompressible Navier–Stokes and Euler equations. We define a dissipation termD(u) which
stems from an eventual lack of smoothness in the solutionu. We give in passing a simple proof
of Onsager’s conjecture on energy conservation for the three-dimensional Euler equation, slightly
weakening the assumption of Constantinet al. We suggest calling weak solutions with non-negative
D(u) ‘dissipative’.

AMS classification scheme numbers: 35Q30, 76D05

1. Introduction

Here we consider the three-dimensional (for the most part) incompressible Navier–Stokes and
Euler equations. For simplicity we limit ourselves to flows on the torusT = (R/Z)3, i.e. with
periodic boundary conditions.

Let us take the Navier–Stokes equation first. For an initial velocity fieldu0 with
finite energy, as is well known (Leray [4, 5]), there exists at least one weak solution (i.e.
in the sense of distributions) to the Cauchy problem.A priori such a solution belongs to
L∞(0, T ;L2) ∩ L2(0, T ;H 1) and there is not enough smoothness to ensure the classical
energy equality; all we know is that one can define some weak solution satisfying, in addition,

d

dt

∫
1
2u

2 dx + ν
∫
(∇u)2 dx 6 0.

As a first step we show that for any weak solutionu of the Navier–Stokes equation, the local
equation of energy

∂t (
1
2u

2) + div(u( 1
2u

2 + p))− ν1 1
2u

2 + ν(∇u)2 +D(u) = 0

is satisfied, withD(u)defined in terms of the local smoothness ofu. Thus the non-conservation
of energy originates from two sources: viscous dissipation and a possible lack of smoothness
in the solution.
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For the Euler equation, we consider weak solutions inL3(0, T ;L3). Although there is no
general result at present for the global-in-time existence of such solutions, some examples are
known (consider any two-dimensional weak solution given by Yudovich’s [10] theorem).

According to an approach in the study of turbulence that goes back to Onsager [7], it might
be true that such weak solutions of the three-dimensional Euler equation describe the turbulent
flow correctly (in the limit of infinite Reynolds number of course). Smooth solutions conserve
energy as is shown by a simple integration by parts, but this calculation does not extend to
weak solutions. Some weak solutions have been constructed without energy conservation
(Scheffer [9], Shnirelman [8]). Onsager had conjectured that weak solutions of the Euler
equation satisfying a Ḧolder continuity condition of order> 1

3 should conserve energy. The
great interest of this question was duly emphasized by Eyink [2], who also gave a proof of
energy conservation under a stronger assumption. Then Constantinet al [1] gave a simple and
elegant proof of energy conservation under the weaker and more natural assumption thatu

belongs to the Besov spaceBα,∞3 with α > 1
3.

Our considerations above on dissipation in the Navier–Stokes equation apply to weak
solutions of Euler as well: one has a local equation of energy

∂t (
1
2u

2) + div(u( 1
2u

2 + p)) +D(u) = 0

and the explicit form ofD(u)makes it possible to prove energy conservation under a slightly
weaker assumption.

We then come to the problem of distinguishing, among weak solutions of Euler or Navier–
Stokes equations, which ones may be considered physically acceptable. We first see that the
weak solutions of Navier–Stokes constructed by Leray [4, 5] do satisfyD(u) > 0. We also
show that any weak solution of the Euler equation which is a strong limit of smooth solutions
of the Navier–Stokes equation satisfies this same condition. Finally, we are led to a definition
of dissipative weak solutions: those satisfyingD(u) > 0.

2. The local equation of energy for weak solutions of Navier–Stokes and Euler equations

Our main point is expressed in the following two results:

Proposition 1. Letu ∈ L2(0, T ;H 1) ∩ L∞(0, T ;L2), a weak solution of the Navier–Stokes
equation on the three-dimensional torusT :

∂tu + ∂i(uiu)− ν1u +∇p = 0

divu = 0.
(1)

Letϕ be any infinitely differentiable function with compact support onR3, even, non-negative
with integral 1 andϕε(ξ) = (1/ε3)ϕ(ξ/ε).

PutDε(u)(x) = 1
4

∫ ∇ϕε(ξ) · δu(δu)2 dξ , whereδu = u(x + ξ)− u(x).
Then, asε goes to 0, the functionsDε(u) (which are inL1(]0, T [×T )) converge, in the

sense of distributions on]0, T [×T , towards a distributionD(u), not depending onϕ, and the
following local equation of energy is satisfied:

∂t (
1
2u

2) + div(u( 1
2u

2 + p))− ν1 1
2u

2 + ν(∇u)2 +D(u) = 0.

Proof. Using Sobolev inclusion ofH 1 in L6, one easily sees thatu is in L3(0, T ;L3) and
thereforeuiuk is in L3/2(0, T ;L3/2); and the same forp since, taking the divergence of (1),
one obtains

−1p = ∂k∂i(uiuk)
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and ifp is the only solution with mean zero, the linear operatoruiuk → p is strongly continuous
onLq for 1< q <∞, and sop ∈ L3/2(0, T ;L3/2).

Now let us regularize equation (1): denotinguε = ϕε∗u,pε = ϕε∗p, (uiu)ε = ϕε∗(uiu),
etc one has

∂tu
ε + ∂i(uiu)

ε − ν1uε +∇pε = 0.

This equation multiplied scalarly byu, plus equation (1) multiplied byuε, gives

∂t (u · uε) + div((u · uε)u + pεu + puε) +Eε − ν1(u · uε) + 2ν∇u · ∇uε = 0

where

Eε(t, x) = ∂i(uiuj )εuj − uiuj ∂iuεj .
Sinceu ∈ L3(0, T ;L3),u · uε converges tou2 and(u · uε)u + pεu + puε converges to

(u2 + 2p)u in the sense of distributions on ]0, T [×T . Moreover,∇uε tends to∇u strongly
in L2(]0, T [×T ), thusEε(t, x) converges in the sense of distributions towards

−∂t (u2)− div(u(u2 + 2p)) + ν1u2 − 2ν(∇u)2.
Another calculation gives∫
∇ϕε(ξ) · δu(δu)2 dξ = −∂i(uiujuj )ε + 2∂i(uiuj )

εuj + ∂i(ujuj )
εui − 2uiuj ∂iu

ε
j .

However,∂i(ujuj )εui = ∂i(ui(ujuj )ε), due to the incompressibility ofu.
Moreover,∂i(ui(ujuj )ε− (uiujuj )ε) tends to 0 in the sense of distributions on ]0, T [×T

and thus
∫ ∇ϕε(ξ) · δu(δu)2 dξ has the same limit as 2Eε. �

The same reasoning applies entirely for a weak solution of the Euler equation (ν = 0) and
gives

Proposition 2. Let u ∈ L3(0, T ;L3) be a weak solution of the Euler equation. Then the
functionsDε(u) converge, in the sense of distributions, to a distributionD(u), not depending
onϕ, and the following local equation of energy holds:

∂t (
1
2u

2) + div(u( 1
2u

2 + p)) +D(u) = 0.

Remark. In the two previous propositionsD(u) measures a possible dissipation (or
production) of energy caused by a lack of smoothness in the velocity fieldu, this term is
by no means related to the presence or absence of viscosity.

Now let us state a simple smoothness condition which impliesD(u) = 0.

Proposition 3. Letu satisfy
∫ |u(t, x + ξ)− u(t, x)|3 dx 6 C(t)|ξ |σ(|ξ |), whereσ(a) tends

to 0 witha, and
∫ T

0 C(t) dt < +∞. ThenD(u) = 0.

Proof. One has∣∣∣∣∫ ∇ϕε(ξ) · δu(δu)2 dξ

∣∣∣∣ 6 ∫ ∣∣∇ϕε(ξ)∣∣ |δu|3 dξ
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integrating over ]0, T [×T yields∫
dt
∫ ∣∣Dε(u)

∣∣ dx 6 ∫ dt
∫ ∣∣∇ϕε(ξ)∣∣ dξ ∫ ∣∣δu∣∣3 dx

6
∫ T

0
C(t) dt

∫
1

ε4

∣∣∣∣∇ϕ(ξε
)∣∣∣∣|ξ |σ(|ξ |) dξ

and puttingξ = εη, one can see that this tends to 0 withε. �

Remark. If u is a weak solution of the Euler equation and satisfies the smoothness condition in
proposition 2 above, then the kinetic energy ofu is conserved (just integrate the local equation
of energy overx). This provides a proof of Onsager’s conjecture [1, 2, 7] under an assumption
slightly weaker thanu ∈ L3(0, T ;Bα,∞3 ) with α > 1

3.

3. Relevance to real turbulence?

There is still some doubt as to whether weak solutions of the Navier–Stokes equation, the
uniqueness of which is unknown, or hypothetical weak solutions of the Euler equation, are
relevant to the description of turbulent flows at high Reynolds number. It seems reasonable
to require some extra conditions: one of them might be that the lack of smoothness
could not lead to local energy creation. In other words, one should haveD(u) > 0 on
]0, T [×T .

It is quite remarkable that this condition is satisfied by every weak solution of the Navier–
Stokes equation obtained as a limit of (a subsequence of) solutionsuε of the regularized
equation introduced by Leray [4, 5]:

∂tuε + ∂i((ϕ
ε ∗ uεi)uε)− ν1uε +∇pε = 0

div(uε) = 0 uε(0) = ϕε ∗ u0.

Foru0 given inL2 andε > 0, this equation has a uniqueC∞ solutionuε.
The sequence(uε) is bounded inL2(0, T ;H 1) ∩ L∞(0, T ;L2) and a subsequence

converges tou, a weak solution of Navier–Stokes, weakly inL2(0, T ;H 1) and strongly in
L3(0, T ;L3). However, for the regularized equation, one has the local energy balance

∂t
(

1
2u

2
ε

)
+ div

((
ϕε ∗ uε

)
1
2u

2
ε + pεuε

)− ν1 1
2u

2
ε + ν

(∇uε)2 = 0

henceν(∇uε)2 converges in the sense of distributions towards

−∂t ( 1
2u

2)− div(u( 1
2u

2 + p)) + ν1 1
2u

2.

For every functionψ(t, x) infinitely differentiable and non-negative, the functionalu →∫∫
(∇u)2ψ(t, x)dx dt is convex and lower semicontinuous on the weak spaceL2(0, T ;H 1),

and thus

lim
ε→0

∫ ∫
(∇uε)2ψ(t, x)dx dt >

∫ ∫
(∇u)2ψ(t, x)dx dt

which implies limε→0 ν(∇uε)2 − ν(∇u)2 = D(u) > 0. This fact is well known; see, for
example, [6].

Remark. Two natural questions arise at this point:

(a) Does there exist a weak solution of Navier–Stokes inL2(0, T ;H 1) ∩ L∞(0, T ;L2) with
D(u) 6= 0?
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(b) Does the conditionD(u) > 0 imply uniqueness for weak solutions of Navier–Stokes?

Let us call ‘dissipative’ such weak solutions withD(u) > 0.
In the case of the inviscid Burgers equation in one space dimension,D(u) > 0 coincides

with the usual entropy condition of negative jumps, which does imply uniqueness.
The following proposition shows that the conditionD(u) > 0 appears naturally for weak

solutions of the Euler equation.

Proposition 4. Letu ∈ L3(0, T ;L3) be a weak solution of the Euler equation, which is the
strong limit of a sequence of dissipative weak solutions of Navier–Stokes as viscosity goes to
zero. ThenD(u) > 0.

Proof. The weak solution of Navier–Stokesuν satisfies

∂t (
1
2u

ν2) + div(( 1
2u

ν2 + pν)uν)− ν1 1
2u

ν2 + ν(∇uν)2 +D(uν) = 0.

Sinceuν tends tou in L3(0, T ;L3) strong, one has

lim
ν→0

(ν(∇uν)2 +D(uν)) = −∂t ( 1
2u

2)− div(( 1
2u

2 + p)u) = D(u)
in the sense of distributions, and thusD(u) > 0. �

Remark. Let u ∈ L3(0, T ;L3) be a weak solution of the Euler equation, dissipative in the
sense thatD(u) > 0. Then it is a dissipative solution of the Euler equation in the sense of
Lions [6]. Indeed, every weak solution with(d/dt)

∫
1
2u

2 dx 6 0 is a dissipative solution in
Lions’ sense. Notice that this last condition does not preventa priori local creation of energy
in some regions of the flow.

4. The two-dimensional case

In two space dimensions the situation is clearer for the Navier–Stokes equation. For every
initial velocity fieldu0 in L2 one has a unique weak solution inL2(0, T ;H 1)∩L∞(0, T ;L2)

and this solution satisfies the global energy balance

1
2

∫
u2(T , x)dx + ν

∫ T

0
dt
∫
(∇u)2 dx = 1

2

∫
u2

0(x) dx.

In fact, one has a slightly stronger result:

Proposition 5. Let u be the unique weak solution of the two-dimensional Navier–Stokes
equation above. ThenD(u) = 0.

Proof. We use the interpolation inequality‖v‖L3 6 C‖v‖2/3
L2 ‖v‖1/3H 1 together with‖δu‖L2 6

|ξ |‖u‖H 1 and‖δu‖ 6 2‖u‖ (for any norm).
From the expression forDε(u) one has

‖Dε(u)‖L1(dx) 6
1

4ε

∫ ∫
|∇ϕ(ξ)||u(t, x + εξ)− u(t, x)|3 dx dξ

and sinceu ∈ L∞(0, T ;L2), this is bounded from above, for almost everyt ∈ [0, T ], by a
fixed integrable functionC‖u(t)‖2

H 1.
On the other hand, for almost everyt ∈ [0, T ], u(t) is inH 1 and∥∥u(t, x + εξ)− u(t, x)∥∥3

L3(dx) 6 Cε
2|ξ |2‖u‖3

H 1

so that‖Dε(u)‖L1(dx)→ 0 asε goes to 0.
Applying Lebesgue’s dominated convergence theorem, one obtainsD(u) = 0. �
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The case of the 2D Euler equation

Foru0 in L2 such thatω0 = curlu0 ∈ Lr , 1< r <∞, there exists at least one weak solution
of the Euler equation in the spaceC([0,∞[;W 1,r ) [6]. From Sobolev inclusion, forr > 6

5
one hasW 1,r ⊂ L3, thenD(u) is defined and the local energy balance holds withD(u).

Moreover, we have

Proposition 6. Letu be a weak solution of the 2D Euler equation as above withr > 3
2 , then

D(u) = 0.

Proof. Apply the Hölder inequality∥∥δu∥∥
L3 6

∥∥δu∥∥α
Lr

∥∥δu∥∥1−α
Lq

1

3
= α

r
+

1− α
q

.

Takingq = 2r/(2− r), so that‖ ‖Lq 6 c‖ ‖W 1,r , and using‖δu‖Lr 6 |ξ |‖u‖W 1,r , one obtains

‖δu‖L3 6 c|ξ |α‖u‖W 1,r with α = 5

3
− 2

r
.

If r > 3
2, thenα > 1

3 and proposition 3 applies. �

5. Inertial dissipation and the four-fifth law

We have already seen thatD(u) does not depend onϕ. Assuming some space continuity of
u, we are able to express it more explicitly using a radially symmetric functionϕ(|ξ |).

Let us put

S(u)(x, r) =
∫
|ξ |=1

(u(x + rξ)− u(x))2(u(x + rξ)− u(x)) · ξ d6(ξ)

where d6 denotes the area measure on the sphere.
An easy computation gives

Dε(u) = 1
4

∫ ∞
0
ϕ′(r) r3S(u)(x, εr)

εr
dr.

Now let us assume that, asε→ 0, S(u)(x, ε)/ε tends to a limits(u)(x). Then

Dε(u)→ 1
4s(u)

∫ ∞
0
ϕ′(r) r3 dr = − 3

16π
s(u).

The four-fifth law (von Karman and Howarth, Kolmogorov) says that for a stationary,
homogeneous and isotropic random turbulent velocity fieldu one should have〈(

δu ·
ξ

|ξ |
)3〉
= − 4

5D|ξ |

whereD is the mean rate of (inertial) energy dissipation per unit mass and〈 〉 denotes the
statistical mean.

Without isotropy, one proves (Monin, cf Frisch [3])

D = − 1
4 divξ 〈(δu)2δu〉

∣∣
ξ=0

integrating inξ over the ball|ξ | 6 ε one obtains

D = − 3

16π
lim
ε→0

1

ε

〈∫
|ξ |=1

(u(x + εξ)− u(x))2(u(x + εξ)− u(x)) · ξ d6(ξ)

〉
.
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Our expression of

s(u) = lim
ε→0

1

ε

∫
|ξ |=1

(u(x + εξ)− u(x))2(u(x + εξ)− u(x)) · ξ d6(ξ)

thus simply gives a local non-random form of the above expression of the inertial dissipation.
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l’hydrodynamiqueJ. Math. Pures Appl.121–82
[5] Leray J 1934 Essai sur le mouvement d’un liquide visqueux emplissant l’espaceActa Math.63193–248
[6] Lions P L 1996Mathematical Topics in Fluid Mechanicsvol 1 Incompressible Models(Oxford: Clarendon)
[7] Onsager L 1949 Statistical hydrodynamicsNuovo Cimento Suppl.6 279
[8] Shnirelman A I 1996–7 Weak solutions of incompressible Euler equations with decreasing energyŚeminaire
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