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Abstract. We study the local equation of energy for weak solutions of three-dimensional
incompressible Navier—Stokes and Euler equations. We define a dissipatiobtefmwhich

stems from an eventual lack of smoothness in the solutiokiVe give in passing a simple proof

of Onsager’s conjecture on energy conservation for the three-dimensional Euler equation, slightly
weakening the assumption of Constaetial. We suggest calling weak solutions with non-negative
D(w) ‘dissipative’.

AMS classification scheme numbers: 35Q30, 76D05

1. Introduction

Here we consider the three-dimensional (for the most part) incompressible Navier—Stokes and
Euler equations. For simplicity we limit ourselves to flows on the tafus (R/Z)3, i.e. with
periodic boundary conditions.

Let us take the Navier—Stokes equation first. For an initial velocity fieJdwith
finite energy, as is well known (Leray [4, 5]), there exists at least one weak solution (i.e.
in the sense of distributions) to the Cauchy problef priori such a solution belongs to
L>(0,T; L% N L?0,T; HY) and there is not enough smoothness to ensure the classical
energy equality; all we know is that one can define some weak solution satisfying, in addition,

%/%uzdw+v/(Vu)2da:<0.

As a first step we show that for any weak solutioof the Navier—Stokes equation, the local
equation of energy

3 (3u®) +div(u(3u? + p)) — VAU +v(Vu)? + D(u) = 0

is satisfied, withD (u) defined in terms of the local smoothnessofThus the non-conservation
of energy originates from two sources: viscous dissipation and a possible lack of smoothness
in the solution.
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For the Euler equation, we consider weak solutions3(0, 7'; L%). Although there is no
general result at present for the global-in-time existence of such solutions, some examples are
known (consider any two-dimensional weak solution given by Yudovich’s [10] theorem).

According to an approach in the study of turbulence that goes back to Onsager [7], it might
be true that such weak solutions of the three-dimensional Euler equation describe the turbulent
flow correctly (in the limit of infinite Reynolds number of course). Smooth solutions conserve
energy as is shown by a simple integration by parts, but this calculation does not extend to
weak solutions. Some weak solutions have been constructed without energy conservation
(Scheffer [9], Shnirelman [8]). Onsager had conjectured that weak solutions of the Euler
equation satisfying a lder continuity condition of ordejs% should conserve energy. The
great interest of this question was duly emphasized by Eyink [2], who also gave a proof of
energy conservation under a stronger assumption. Then Constaal|i] gave a simple and
elegant proof of energy conservation under the weaker and more natural assumptien that
belongs to the Besov spad§™ with o > 1.

Our considerations above on dissipation in the Navier—Stokes equation apply to weak
solutions of Euler as well: one has a local equation of energy

01 (3u®) + div(u(3u® + p)) + D(u) = 0

and the explicit form ofD (u) makes it possible to prove energy conservation under a slightly
weaker assumption.

We then come to the problem of distinguishing, among weak solutions of Euler or Navier—
Stokes equations, which ones may be considered physically acceptable. We first see that the
weak solutions of Navier—Stokes constructed by Leray [4, 5] do safisty) > 0. We also
show that any weak solution of the Euler equation which is a strong limit of smooth solutions
of the Navier—Stokes equation satisfies this same condition. Finally, we are led to a definition
of dissipative weak solutions: those satisfyibgu) > O.

2. The local equation of energy for weak solutions of Navier—Stokes and Euler equations

Our main point is expressed in the following two results:

Proposition 1. Letw € L?(0, T; H') N L>=(0, T; L?), a weak solution of the Navier—Stokes
equation on the three-dimensional toris

du+0;(u;u) —vAu+Vp =0

divu = 0. @)

Lety be any infinitely differentiable function with compact supporfdneven, non-negative
with integral 1 andy® (&) = (1/3)p(&/¢).

Put D, (u)(x) = 3 [ Vg©(£) - Su(Su)? d&, wheredu = u(x +§) — u(x).

Then, as: goes to 0, the functiond, (u) (which are inL(]0, T[x7)) converge, in the
sense of distributions d@, T[x T, towards a distributiorD (u), not depending op, and the
following local equation of energy is satisfied:

¥ (3u?) +div(u(3u® + p)) — vAIu? +v(Vu)® + D(u) = 0.
Proof. Using Sobolev inclusion oH! in L®, one easily sees thatis in L3(0, T; L®) and

thereforeu;u; is in L¥2(0, T; L%?); and the same fop since, taking the divergence of (1),
one obtains

—Ap = 0,0; (u;uy)



Energy dissipation for Euler and Navier—Stokes equations 251

and if p isthe only solution with mean zero, the linear operatag — p is strongly continuous
onLiforl<gq < oo, andsop € L¥2(0, T; L¥?).

Now letusregularize equation (1): denotidy= ¢°xu, p® = ¢°*p, (u;u)® = ¢**(u;u),
etc one has

o,u’ +0;(u;u)® —vAu® +Vp® =0.
This equation multiplied scalarly by, plus equation (1) multiplied by?, gives
0;(u-u’) +div((u - u’)u + pPu + pu’) + E, — vA(u - uf) + 20Vu - Vu® =0
where

Ec(t,x) = 0;(uju;)u; — uiuj8,»u§.

Sinceu € L3(0, T; L), u - u® converges tar? and(u - u®)u + p°u + pu® converges to
(u? + 2p)u in the sense of distributions on,]J0[x7. Moreover,Vu? tends toVu strongly
in L2(]0, T[xT), thusE. (¢, x) converges in the sense of distributions towards

—8,(u®) — div(u(u® + 2p)) + vAU? — 20(Vu)?.

Another calculation gives
f V(pg(é) . 5u(8u)2 d%‘ = —3,' (uiujuj)g + 23, (u,-uj)suj + 8,~ (ujuj)gu,- - 21/!,‘[4]‘3,'145.

However,o; (uju j)°u; = 9; (u;(uju;)°), due to the incompressibility af.
Moreover,d; (u; (uju;)° — (u;uju;)°) tends to 0 in the sense of distributions onTQx 7T
and thus[ Vg# (€) - su(u)? dé has the same limit asi2. O

The same reasoning applies entirely for a weak solution of the Euler equatio®) and
gives

Proposition 2. Letw € L3(0, T; L®) be a weak solution of the Euler equation. Then the
functionsD, (u) converge, in the sense of distributions, to a distributidf), not depending
on g, and the following local equation of energy holds:

3 (3u?) + div(u(zu’ + p)) + D(w) = 0.

Remark. In the two previous proposition®(u) measures a possible dissipation (or
production) of energy caused by a lack of smoothness in the velocitydiettis term is
by no means related to the presence or absence of viscosity.

Now let us state a simple smoothness condition which imghés) = 0.

Proposition 3. Letw satisfy [ |u(z, x +&) — u(z, X)Bdx < C@®)|E|o(|€]), whereo (a) tends
to 0 witha, andfoT C(t)dt < +o00. ThenD(u) = 0.

Proof. One has

/ V() - au(awzds' < / |V ()| 15ul® dg
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integrating over |07 [ x 7 yields

/dt/|D£(u)|dx < /dt/\vgps(g);dg/yauﬁdx

T 1 %-
</0 c<r>dt/; V(ﬂ(;)'léla(lél)dé

and puttingg = en, one can see that this tends to 0 with |

Remark. If u is a weak solution of the Euler equation and satisfies the smoothness condition in
proposition 2 above, then the kinetic energywé conserved (just integrate the local equation
of energy over). This provides a proof of Onsager’s conjecture [1, 2, 7] under an assumption

slightly weaker thanw € L3(0, T; By™) with o > 1.

3. Relevance to real turbulence?

There is still some doubt as to whether weak solutions of the Navier—Stokes equation, the
uniqueness of which is unknown, or hypothetical weak solutions of the Euler equation, are
relevant to the description of turbulent flows at high Reynolds number. It seems reasonable
to require some extra conditions: one of them might be that the lack of smoothness
could not lead to local energy creation. In other words, one should Pawg > 0 on
10, T[xT.

Itis quite remarkable that this condition is satisfied by every weak solution of the Navier—
Stokes equation obtained as a limit of (a subsequence of) solutipeé the regularized
equation introduced by Leray [4, 5]:

Orue + 8i(((pg * Ugi)Us) — VAU, +Vp, =0
div(u,) =0 u,(0) = ¢° * ug.

Forug given in L? ande > 0, this equation has a uniq@® solutionu,.

The sequencéu,) is bounded inL?(0, T; H') N L*>°(0, T; L?) and a subsequence
converges ta:, a weak solution of Navier—Stokes, weakly id(0, 7; H') and strongly in
L3(0, T; L®). However, for the regularized equation, one has the local energy balance

. 2
8;(%113) + dlv((go‘E * ug)%uf + psug) — UA%uf + v(Vug) =0
hencev(Vu,)? converges in the sense of distributions towards
—8,(%11,2) - div('u,(%u2 +p)+ vA%uz.

For every functiony (¢, x) infinitely differentiable and non-negative, the functional—
ff(Vu)z ¥ (¢, x) dx dr is convex and lower semicontinuous on the weak s@#¢e, T; H'),
and thus

|im0//(vfu£)21/f(t,x)dx dr > //(Vu)zljf(t,x) dx dr
which implies lim_ov(Vu,)? — v(Vu)?> = D(u) > 0. This fact is well known; see, for
example, [6].
Remark. Two natural questions arise at this point:

(a) Does there exist a weak solution of Navier—Stokes?(®, T; H') N L>(0, T; L?) with
D(u) # 0?



Energy dissipation for Euler and Navier—Stokes equations 253

(b) Does the conditio (u) > 0 imply uniqueness for weak solutions of Navier—Stokes?

Let us call ‘dissipative’ such weak solutions with(u) > 0.

In the case of the inviscid Burgers equation in one space dimenBiar), > 0 coincides
with the usual entropy condition of negative jumps, which does imply uniqueness.

The following proposition shows that the conditibr{u) > 0 appears naturally for weak
solutions of the Euler equation.

Proposition 4. Letu € L3(0, T; L®) be a weak solution of the Euler equation, which is the
strong limit of a sequence of dissipative weak solutions of Navier—Stokes as viscosity goes to
zero. ThenD(u) > 0.

Proof. The weak solution of Navier—Stoked satisfies

3 (u"?) +div(Gu"? + p')u’) — vAZu"? +v(Vu')? + D(u’) = 0.
Sinceu” tends tou in L3(0, T; L®) strong, one has

lim (v(Vu')? + D(u")) = —8,(7u®) — dv((3u* + p)u) = D(u)

in the sense of distributions, and thDgsu) > 0. O

Remark. Letw e L3(0, T; L®) be a weak solution of the Euler equation, dissipative in the
sense thaD(u) > 0. Then it is a dissipative solution of the Euler equation in the sense of
Lions [6]. Indeed, every weak solution witid/dz) [ %uz dx < O is a dissipative solution in
Lions’ sense. Notice that this last condition does not preagariori local creation of energy

in some regions of the flow.

4. The two-dimensional case

In two space dimensions the situation is clearer for the Navier—Stokes equation. For every
initial velocity field ug in L2 one has a unique weak solutionfiR(0, 7; HY) N L>(0, T; L?)
and this solution satisfies the global energy balance

T
%/uZ(T,x)dx+v/ dt/(V'u,)zdx = %/ué(x) dx.
0

In fact, one has a slightly stronger result:

Proposition 5. Let » be the unique weak solution of the two-dimensional Navier—Stokes
equation above. ThebB(u) = 0.

2/3
L2

1/3

Proof. We use the interpolation inequaliiy|;s < Cllv|| i

|&[llull 2 and[[$ull < 2]|u| (for any norm).
From the expression fab, (u) one has

1 3
1De (w) [l 1) < E//IVso(S)IIu(t,x+8$)—U(t,x)l dx d§

and sincew € L>®(0, T; L?), this is bounded from above, for almost everg [0, 7], by a
fixed integrable functior€ [|u(1)||2,,.
On the other hand, for almost everg [0, 7], u(¢) is in H* and

3 21612 3
i, x +£8) = w(t, 0 Jaqy, < CEIEP NG

so that|| D, (w) || .2y) — O ase goes to 0.
Applying Lebesgue’s dominated convergence theorem, one oligins = O. |

lv]l 7. together with||Su| ;2 <



254 J Duchon and R Robert

The case of the 2D Euler equation

Forug in L2 such thatwy = curlug € L™, 1 < r < 00, there exists at least one weak solution

of the Euler equation in the spac¥|[0, oo[; W) [6]. From Sobolev inclusion, for > g

one has¥*" c L3, thenD(u) is defined and the local energy balance holds \ith).
Moreover, we have

Proposition 6. Letu be a weak solution of the 2D Euler equation as above with g then
D(u) = 0.

Proof. Apply the Holder inequality

Jsul, < oull ol 5=+
3 r q
Takingg = 2r/(2 —r), so that|| ||« < c|| lwer, and using|dul.- < |E]||ulwe-, One obtains
dullzs < cl&lullwer with o = g - Z.
,
If r > % thena > % and proposition 3 applies. O

5. Inertial dissipation and the four-fifth law

We have already seen thBt(u) does not depend ap. Assuming some space continuity of
u, we are able to express it more explicitly using a radially symmetric funeti¢s).

Let us put

S(u)(x,r) = / (u(x +7€) — u(x)*(u(x +r&) — u(x)) - £ dT(€)
l§1=1

where & denotes the area measure on the sphere.

An easy computation gives
3S(u)(x, er) dr.

er

D.(u) = %/0 o'y

Now let us assume that, as— 0, S(u)(x, £)/¢ tends to a limits(u)(x). Then
D;(u) — l—lls(u)/(; o' ridr = —%s(u).

The four-fifth law (von Karman and Howarth, Kolmogorov) says that for a stationary,
homogeneous and isotropic random turbulent velocity fietshe should have

(o £))--10

where D is the mean rate of (inertial) energy dissipation per unit mass{artknotes the
statistical mean.
Without isotropy, one proves (Monin, cf Frisch [3])

D=-1 divg((Su)zé)‘u)|§=0

integrating in& over the ball¢| < ¢ one obtains

iyl 2 )
D=———1Im— / (u(x +&§) — u(x)*(ulx +&§) —u(x)) - §dX(§)).
[§1=1
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Our expression of

s(u) = lim ! / 1(U(x +68) — w(x))?(u(x +§) —u(x)) - £ AT (&)
le1=

e—=0¢

thus simply gives a local non-random form of the above expression of the inertial dissipation.
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