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ABSTRACT. — We prove several related results concerning the genericity (in the sense of Baire’s
categories) of multifractal functions. One result asserts that,—ifd/p > 0, quasi-all functions of the
Sobolev spacd.”-S (RY) (or the Besov spacB;’q(Rd)) are multifractal functions, with a spectrum of
singularities supported by the intervial — d/p, s], on which the spectrum i8(H) =d — (s — H)p.
Another result asserts that the Frisch—Parisi conjecture also holds for quasi-all functions, if the range of
ps over which one computes the Legendre transform is chosen appropria2€l90 Editions scientifiques
et médicales Elsevier SAS

1. Introduction

The Frisch—Parisi conjecture concerns the multifractal properties of functions that belong to
some function spaces. Therefore, in order to state this conjecture, we first need to recall some
basic definitions concerning the multifractal analysis of functions. We start with the definition of
pointwiseHdlder regularityC* (xo). Let xg € R? and leta be a positive real number. A function
f(x):RY — R is C%(xp) if there exists a constar > 0 and a polynomial,, of degree at
most[«] such that in a neighbourhood of,

1) | f(x) = Pry(x)| < Clx — x0]*.

Note that this definition is local and involves no uniform regularity. Higder exponentof f
atxp is

h £ (x0) = Sup{a: fe C“(xo)}.

Multifractal analysis is concerned in the study of the (usually fractal) Sgtswhere a
function f has a given Holder exponer{. The domain of definition of the spectrum of
singularitiesd (H) is the set of values off such thatSy is not empty. If H belongs to this
domain of definitiond (H) is the Hausdorff dimension dfy (d(H) is often called the Holder
spectrum). The functiod(H) can be extended to the whole real line by using the convention
dim(@) = —o0, so thatd(H) = —oo if H is nowhere the Holder exponent gf(this convention
is consistent with the Legendre transform approach that we will describe, since this approach is
expected to yield-oo for the values ofH that are not an Holder exponent ¢j. A function
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is called multifractal when its spectrum of singularities is defined at least on an interval of non-
empty interior.

Multifractal analysis started to be developed in the context of fully developed turbulence.
B. Mandelbrot first introduced cascade models for the dissipation of energy in a turbulent fluid,
see [22,23] and [20], that turned out to be multifractal measures, see [5] and references therein.
This remarkable insight did meet the experimental results obtained in wind-tunnels which show
that the regularity of the velocity of a turbulent fluid fluctuates widely from point to point,
see [12]. This phenomenon, related to intermittency, suggests that the spectrum of singularities
of the velocity of the fluid might be a universal function, in which case its determination would
yield a fundamental information on the nature of turbulence. Obviously, it is almost impossible to
obtain numerically a spectrum of singularities from its mathematical definition since it involves
the successive determination of several intricate limits. Uriel Frisch and Giorgio Parisi proposed
to derive the spectrum of singularities from ‘averaged quantities’ (the computation of which
should be numerically stable) extracted from the signal; in [11] they proposed the following
formula using thd.” modulus of continuity of the velocity; let

(2) Sy(l) = /|f(x +1) — f(x0)]" dr.

Suppose now thas, (/) scales like7|57 ) when! — 0 (¢r(p) is therefore called thecaling
functionof f); Frisch and Parisi conjectured that the spectrum of singularities can be obtained
using the formula:

3) d(H)=igf(pH—§f(p)+d),

see [11] or [14] for the heuristical derivation of (3) using similarities with statistical physics.
Clearly, the domain of validity of this formula cannot be arbitrary since, for instafis€)

only involves first order differences, and therefore is not expected to give information on Hélder
exponents larger than 1. This restriction and several similar ones can be withdrawn using the
relation betweer§, (/) and Sobolev or Besov-type norms; indeedy i 1, andz s (p) € [0, 1],

{r(p)=suprt: f € B;ﬂf’)’cw}, see [14]. (We uséif,’,‘fgc instead ofB),* because the functions
considered are not expected to have any decay at infinity, and the integral (2) is computed on

bounded domains.) Since Besov spaces are defined for arbirary valuesap, the function

(4) nr(p) =supft: feBé{l’;;:oo}

is thus a natural extension ¢f (p) which is defined without any restriction on its domain of
definition (as long ag is positive) or on its range; we will therefore also aafl(p) the scaling
function of f. It is thus natural to conjecture that:

(5) d(H) =inf(pH —n7(p) +d).

When (5) holds we say that thraultifractal formalismis satisfied. Of course we should state
precisely the range gfs on which the infimum is taken; it is usually assumed that the infimum
has to be taken on all positiyes. We will see that it is not the case: The validity of formula (5)
depends precisely on a right choice for this range which must be smaller as we will see in the
following.

Remarks— Since formula (5) is a Legendre transform, it can hold only for spectra that are
concave, and since the functiony (p) is defined only for positiveps, it can yield only the
increasing part of f)-shaped spectrum.
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The Frisch—Parisi formula has been extended to negatiyand in that case, it is expected to
yield the right-side, decreasing part of gshaped spectrum; one has to renormalize the possible
divergence of the integral (2), which can be done using wavelet techniques (see [3] for the
numerical technique of the Wavelet Maxima Method and [17] for a mathematical framework
which yields a natural extension of Besov spaces to neggtisedHowever, these extensions do
not correspond to inclusions in topological vector spaces and therefore the problem solved in the
present paper cannot be formulated in this setting.

Note that the initial examples of Mandelbrot were multifractal measures; in this context, the
Holder exponent atg has to be replaced by the local dimension@tdefined as:

liminf log . (B(xo, 7))
r—0 logr

(whereB(xo, r) denotes the ball of centep and radius). The quasi-sure results of [6] concern
one-dimensional measures.

Though the conjecture of Frisch and Parisi was stated in the context of fully developed
turbulence, the heuristic argument used in its derivation does not use any specific assumption
on turbulent flows. The validity of (5) can therefore be raised in a more general context; it
is far from holding for all functions in a given function space; indeed it is extremely easy to
construct counterexamples to (5). On the opposite, each time (5) has been shown to hold, it
was the consequence of a functional equation satisfied by the function under study (usually a
selfaffinity property, either exact, approximate, or stochastic). Therefore the general consensus
among mathematicians and physicists was that the validity of the multifractal formalism must
be the consequence of a precise inner structure of the function considered. The purpose of the
present paper is to show that the opposite is true: The Frisch—Parisi conjecture holds for quasi-all
functions, i.e. outside a set of the first class of Baire. Let us explain more precisely what we
mean.

The Frisch—Parisi conjecture, reformulated as in (5) states thaty@longs to the topological
vector space

p,loc
e>0, p>0

then its spectrum of singularities satisfies (5).

We will see thatV is a Baire’s space, i.e. that any countable intersection of everywhere dense
open sets is everywhere dense; we will show that in the spgcthe set of functions that
satisfy (5) contains a countable intersection of everywhere dense open 3éts.ef contains
a denseaGs set; we will use the traditional expressions: (5) holds generically,ior quasi-all
functions ofV satisfy (5). In order to state precisely our result, we first have to determine which
functionsn(p) can be written as (4), and to specify the rangesin (5).

The properties of a scaling function(p) are more easily expressed using an auxiliary

functions(g) defined with the help of thBesov domainThe Besov domaimB of a function
f is simply the set ofg, s) such thatf belongs toBi’/t{f’oc. By interpolation, the Besov domain
has to be a convex subset®f, and the Besov embeddings imply that(f s) belongs toBy,

then the segment:

{(t.d(t —q)+5), 1 €]0,q[}
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also belongs td ¢, see [27]. It follows that the boundary of the Besov domain is the graph of a
functions(g) which is concave and, sine€q) is clearly increasing,

(7) 0<s'(g) <d.

Note that, in the definition of the Besov domain, we can use indifferently any of the spaces

Bi’/’q’loc (for an arbitraryr) instead ofBi}l{i’oc; such a choice doesn’t change the boundary of
the Besov domain, hence, it wouldn’t changg). Wheng < 1, we can also use the Sobolev

spaceLllo/g .

PrROPOSITION 1. — Any concave functiom(g) satisfying(7) defines the Besov domain of a
distribution f.

Such distributions with a prescribed Besov domain will be constructed in Section 3.1. From
the definition ofp(p) it follows thats(g) = ¢n(1/q), and conversely (p) = ps(1/p). We will
need furthemore that the distributiofiswe consider are actually functions with some uniform
regularity, i.e. that there existg > 0 such thatf € C”(R?). This condition can be written
s(0) > 0. Let us introduce the following definitions:

DEFINITION 1.— A functionn(p) :R™ — R is said to be admissible if(¢) = gn(1/q) is
concave and satisfigs< s'(g) < d. It is strongly admissible if furthermorg0) > 0.

One immediately checks thatijf( p) is admissible, it is concave.
It is proved in [14] that, ifs > d/p, the spectrum of singularities of every function@j"’
satisfies:

(8) d(H)<d—p(s—H) forH>s—d/p
and
(9) d(H)y=—o00 forH<s—d/p

(note that the similar result concerning measures was previously proved in [7]). If the scaling
function n ¢ (p) of a function f is strongly admissible, it follows from the concavity ©fg)

that there exists a critical value of, denoted byp,, such that ifg < 1/p., s(q) > dg and

if g >1/pc, s(q) <dq (exceptin the degenerate case whei®) = so + dg in which case

pe = +00). We can apply (8) for evergs, p) such that > d/p and f € B;’q; this can be done

only for p > p.. It follows that:

(10) d(H)< inf (pH —n(p)+4d).
PZpe

Since no upper bound holds in general fo< p. (see [14]), this formula suggests that, in
the Frisch—Parisi conjecture, the right rangepsfon which the Legendre transform has to be
calculated i € [p., +00). The following theorem, proved in Section 3, shows that it is indeed
the case.

THEOREM 1. — Let n(p) be a strongly admissible function arid be the function space
defined by(6). The domain of definition of the spectrum of singularities of quasi-all functions
of V is the intervalls(0), d/ p.] where it is given by

(11) d(H)=inf (Hp —n(p) +d).

ZPe
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Furthermore, for quasi-all functions of, the Holder exponent takes almost everywhere the
valued/p..

If n(p) is only admissible, but not strongly admissible, quasi-all functioris afe not locally
bounded, so that their spectra of singularities are nowhere defined whateber

Remarks— Formula (11) states that the spectrum of quasi-all functions is composed of two
parts:
e a part defined by < n'(p.) where the infimum in (11) is attained for > p., and the
spectrum can be computed as the ‘usual’ Legendre transfonpof

d(H)= 1[21‘0(1‘119 —n(p) +d);

e a part defined by’ (p.) < H < d/p. where the infimum in (11) is attained fpr= p., and
the spectrum is a straight line

d(H) = Hp,.

This second case is rather unexpected, and shows that the Frisch—Parisi conjecture fails in this
part of the spectrum; we will explain in the following the reason of thus failure.

Comparing (10) and (11) we see that quasi-all functionvoktrive to have their Holder
singularities on a set as large as possible.

Consequences concerning the quasi-sure validity of the multifractal formalism for measures
cannot be directly deduced from Theorem 1.

The study of the properties of quasi-all functions with a given a priori regularity goes back to
the famous papers of Banach [4], Mazurkiewicz [24], Jarnik [19] and Saks [28] at the beginning
of the 30’s, which give differentiability properties of quasi-all continuous functions. At the
beginning of the 80’s, differentiability properties of monotone continuous functions were studied
by T. Zamfirescu in [29] and [30]; this line of research recently culminated in the work of
Z. Buczolich and J. Nagy who proved in [6] that quasi-all monotone continuous functions are
multifractal with spectrumi(H) = H for H € [0, 1]. Their paper was the starting point of the
present one.

In Section 2 we will study a related but simpler problem; namely, we will prove that quasi-all
functions in a given Besov or Sobolev space are multifractal with a given spectrum, and we will
determine this generic spectrum. Note that Sobolev spaces are Baire spaces, and Besov spaces
are Baire spaces since they are metric spaces (or pseudometric spaced jfand complete,
see [27].

THEOREM 2.— Letp >0, ¢ > 0ands > d/p. The domain of definition of the spectrum of
singularities of quasi-all functions CBZ"’(R") is the intervalls — d/p, s] where it is given by

(12) d(H)=p(H —s)+d.

Furthermore, for quasi-all functions dff,"’(Rd), the Hoélder exponent takes almost everywhere
the values. If p > 1, the same result holds fdr”* (R?).

If s <d/p, quasi-all functions oB),?(RY) or of L7*(R¢) are not locally bounded, so that
their spectra of singularities are defined for no valuetbf

If s <d/p andy > 0, the domain of definition of the spectrum of singularities of quasi-all
functions ofB,?(RY) N C¥ (RY) or of L7*(RY) N C¥ (R?) is the interval[y, ‘H‘;i’;yp] where
their spectrum is given by

(13) d(H) = (p + 4 _)/SP)H.
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Furthermore, for quasi-all functions df, ¥ (R?) N C” (RY) or of L7* (RY) N C¥ (R?), the Holder
Y
exponent takes almost everywhere the V%I%.

This theorem shows that quasi-all functions in a given Besov or Sobolev space are multifractal,
except wherp = oo where the spectrum is reduced to one point (in that case the function is called
monofractal). Apart from its own interest, Theorem 2 can be seen as a first step towards the proof
of Theorem 1 for two reasons; first, we will see, as a consequence of Proposition 4 that the
multifractal formalism holds for quasi-all functions in a given Besov or Sobolev space, so that
Theorem 2 can be seen as a particular case of Theorem 1. The second reason is that the proof of
Theorem 2 will allow us to introduce the tools needed afterwards in the general framework of the
Frisch—Parisi conjecture in a much simpler setting, since we have to deal with only one space at
a time. Furthermore the inspection of the last case confirms what is the right rapg@eéded
in the statement of the Frisch—Parisi conjecture.

It follows from (8) and (9) that, in the first assertion of Theorem 2, we only have to prove that
d(H) is larger tharp(H — s) 4+ d, and that, ifH > s, H is not an Hélder exponent.

Similarly, it was also proved in [18] that, i < d/p, the spectrum of singularities of every
function of B, N C7 satisfies:

d— d
(14) d(H) < (p + sP)H for H e [y, 7”}
Y d—sp+yp
and
(15) d(H)=—o00 forH <y.

It follows that, in the last assertion of Theorem 2, we only have to provelitdj is larger than

(p+ %)H and that, ifH > d_sijjryp, H is not an Holder exponent.

2. Multifractal analysis of quasi-all functions of BIS,"’(R"’) and LP+5 (R?)

Firts note that the spaces we consider in this section are either Banach or quasi-Banach spaces
(see [27]) so that they are Baire spaces. Our main tool for proving Theorem 1 and Theorem 2 is
orthonormal wavelet decompositions. Let us mention at this point that the idea of using wavelet
techniques in multifractal analysis has been worked out first by Alain Arneodo and his coworkers,
see for instance [3] and references therein. We start by recalling some notations and properties
of wavelet expansions.

Let (v ),_; _,a_1 be wavelets in the Schwartz class as constructed in [21]. The functions

202y D 2ix —k), jeZ, keZ,

form an orthonormal basis df2(R%). We index the wavelets in terms of the dyadic cubes: If
is the cube

r={xeR% 2/x —ke[0,1]},

we use the notatiomri")(x) =y (2/x —k); thus

(16) ="y ),
i,
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where the wavelet coefficients gfare given by

o0 :/Zdjw(i)(zjt — k) f(r)dr.

R4

(Note that we do not use the usual normalization; the natural normalization for the problem
we consider is thé.*° normalization.)

Wavelets supply an efficient tool to study the Frisch—Parisi conjecture for two reasons: First,
they yield characterizations of Besov and Sobolev spaces, [25]: In view éftheormalization

1/p

/1

. d -

17) feB) <Z]c§’>z“ﬁ” V’) =&; withe; €l9,
k

. _ 1/2
(18) feLr (Z|C§’)|222S’XA()C)) eL”,
A

where x;.(x) denotes the characteristic function of the setn particular, f € C? (R?) if the
sequence.’2/ belongs ta*®.

Similarly, if f € C?(R?) foray > 0, itis shown in [13] that the H6lder exponent pfcan be
computed at every point by the formula:

- log(lc;”))
(19 i x0) = o @ + o — 2
Thus, the quantities that appear in formula (5) can all be expressed in terms of wavelet
coefficients.

The idea of the proof of Theorem 2 begins with the construction of functions for which
the equalities (12) or (13) hold. We will call such functiosesturating functiondbecause they
‘saturate’ the inequalities (10). Then, we start with a sequghakense in the Besov or Sobolev
space we consider. We slightly perturbgteby replacing its wavelet coefficients fgr> j, by
those of the saturating function. We obtain a new dense seqygndach satisfy (5). The result
is obtained by considering a residual set of the form:

A= m U B(gn, ),

NeNn>=N

where B(g,, r,) denotes the open ball (using the norms (17) or (18)) of cepiteand radius
rn; ther, are chosen small enough so that foe j,, the wavelet coefficients of the functions
of B(g,,r,) are ‘close’ to those of,, so that the spectra of the functions Afwill be larger
thanp(H —s) +d.

2.1. Saturating functions whens > d/p

We consider a given Besov spads?(R?) wheres > d/p, p # +oco andgq # +o0. In
this subsection we construct and study the multifractal properties of one specific saturating
function F adapted to this space. We will obtain that the spectrun¥ cfatisfies (12) when
the Holder exponent is computed feg € (0, 1)¢; it will follow that the spectrum of quasi-all
functions is also given by (12) when the Hélder exponent is computeebfar(0, 1)7; clearly
this result does not depend on the particular choice of the unit cube, so that it is true for any
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open cube. CoverinB? by a countable family of open cubes, we will obtain (12) for a countable
intersection of dens€&; sets, hence on &@; set. Thus, from now on, we work of®, 1)¢. We
now define the wavelet coefficienztg) of F. Let j >1 andk € {0, ..., 2/ — 1} be given. We
defineJ < j as follows: Consider the irreducible representation

k K
(20) > =27 wherek € z2¢ — (22)¢.

Leta > 1 be a real exponent; we choose
(21) o0 = LoG=ig5s
ja
d
Note that the term 277 is responsible for the strong variations of regularityFgfif we take it

off, the function thus constructed is a Weierstrass function, which has a constant Holder exponent.

PROPOSITION 2. — If

2 2
(22) a=+2+1,
P oq

the saturating functiorF” whose wavelet coefficients are given(Bg) belongs toB;’q.
The domain of definition of its spectrum of singularities is the intejval %, s], where

d(H)=p(H —s)+d

The Holder exponent df takes the value almost everywhere.

We start by proving the first part of Proposition 2. Liebe given. For eacli < j there are
less than 2/ values ofk satisfying (20); thus

D ns—D)jp 1 ¢ dJ (o=2I\p _ 1-ap
DolePat I < 302t (27 =
k J=0

and (17) will be satisfied if
(23) > (77! < oo,
i1

so that we can choose= % + 2 +1. Letus now determine the Holder exponent of this saturating
function everywhere o0, 1)¢; it will depend on the dyadic approximation properties of the
point considered.

DEFINITION 2.—A pointxg € RY is a-approximable by dyadics if there exists a sequence
(kn, Jn) such that:

1
= gy

ky
2j}‘l

The dyadic exponent 8f is the supremum of alls such thakg is a-approximable by dyadics.
We denote it by (xo).

(24)

X0 —

The dyadic exponent of a point is of course never smaller than 1.
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LEmMMA 1. — The Holder exponent of the saturating functibris

d d
hp(xo)=s——+ .
p  alxo)p

Proof of Lemma 1. tet xg be fixed. For each wavelet coefficient we will estimate the order
of magnitude of

log(le)”p .
log(2~/ + [xo — Al)’
indeed, sinceé” € CY foray > 0, using (19), it will yield the Holder exponent @f at xq.

First, we obtain an upper bound for the Holder exponent.cLet0. There exists an infinite
number of(K,, J,) such that:

(25)

K
o

1

(26) S Qato—od”

X0 —

Consider the wavelet coefficieni%) such thak/2/ = K, /27" andj = [« (x0)J,]. Since

o = L oG9ip
ja
it follows that

log(le”’)  log(le{”])
log(2~/ +|xo—A)  —jlog2

- (s— E+J—,”i)(l+o(l))
jr

(1+0(D))

p
d d

—(s-2 1+0(D).

(s P+Ol(xo)p>( + o)

Thus the liminf of (25) on these coefficientssis- < + a(jo)p and the upper bound holds.

Now, we obtain a lower bound for the Holder exponent. £et0, andj andk be given. We
defineJ and K by K /27 =k/2/, whereK € Z¢ — (2Z)?. Sincea(xo) is the dyadic exponent
at xo, for J large enough, we have:

1
(27) 2o tel =

K
27

k

X0— —|.

X0 >

We separate two types of coefficients:

(1) The coefficients!” such thatik/2/ — xo| <27/,

From the irreducibility of the fractiork /27, it follows that j > J, and from (27) it follows
that

(28) J < (axo) +€)J.
Furthermore,
log(c”h  log(e}” D) (o d
(29) log(2=/ +|xo—1|)  —jlog2 (1+ 0(1)) = (S - ; + 7;)(1—}- 0(1)).
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Because of (28) and (29), the liminf of (25) taken on the coefficients of this first case is larger
than
d d
s——F——
p  plalxo) +¢)
(2) The coefficients!” such thatik/2/ — xo| > 27/,
It follows that

(30) jlog2> —log(|xo — Al);
thus
log(lc{”]) log(lc}”|) (s = )j+ 57)log2
: = 14+0(1)= 1+ 0(1)).
log(2~7 + |xo — Al) Iog(lxo—kl)( @) —log(lxo — A]) ( @)
Using (30), this is larger than
d d Jlog2 )
——+—-—————)(1+01
(s p  p —log(lxo — Al) (1+0)
which, because of (27) exceeds
d d
31 -+ —)(1 1).
5D <S P+P(Oé(XO)+8)>( +om)

Sincee can be chosen arbitrarily small, Lemma 1 followsa

The computation of the spectrum of singularities of the saturating fungtismow immediate
using a standard result of dyadic approximation, see [10] for instance, which states that the
d

Hausdorff dimension of the set of points with dyadic exponeistexactlyd /«. Thus,d(H) = §

if H=s— % + 0% %. Sincewx can take any value larger than 1, the second point of Proposition 2
follows. Furthermore, since almost every point has its dyadic exponent equal to 1, the last point
of Proposition 2 holds.

2.2. The residual set forB,? if s —d/p > 0

We suppose first that # oo andg # co. In that case, the spadif,’q is separable and we can
pick a sequencg, dense inB,,?. We denote by, the following modification off,:

e If j <n the wavelet coefficients gf,, are the same as those ff.

e If j > n the wavelet coefficientsi’) of g, are the same as those of the saturating function

F constructed in the previous subsection.

It clearly follows from our choice of the wavelet coefficients of the saturating fundficimat
Il fo — gnll in B, tends to 0 whem tends to+oc. Thus the sequengg is also dense iB), .
TheG;s dense set that we will consider is:

(32) A= ﬂ U B(gn, ),

meNn>=m

wherer, = 5, 27"/p.
A is clearly a countable intersection of dense open sets. We have chpsemall enough
so that, at the scal¢ = n each wavelet coefficient of a functiofi in B(g,,r,) is close to
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the corresponding coefficient df; indeed, it follows from (21) that the smallest coefficient
of the saturation functio’ at the scalej =n is n%,Z*s” and, because of our choice ©f, the
corresponding wavelet coefficient @gfis between half and two times this quantity.

If a function f belongs to the residual sgt it belongs to an infinite number of balBg,,, r,,).
Denote byB,, this sequence of balls. Thus, at the scglesn;, the wavelet coefficients of are
‘close’ to those of the saturating functidh We denote by, the set of points such that:

1

d d.
3K €29 — (22)%: <o

* T Shijal

for an infinite number of values @f This set can also be defined as:

m—00

. K 1 17
Ilmsup U —2[’”/(” +|:_E’Ei| .
[Z>m,K

Let us first estimate the Holder exponentfoht such a poink € F,. We consider the wavelet
coefficent indexed by andk such thatj = n; and

k K
2j ~ 2lmije]’
thus
D5 Lo sipgimel
A ja
and
j d . d
log(lc,”|) (5 —s)j = Sln/al d d
- = - 1+ 0. :<s——+—> 1+ 0(1)
log(2=/ + |xo — A]) —J ( ) p ap ( )

so that the Holder exponent at this point is smaller than% + %. In order to compute the
dimension ofFy,, let us first recall the following definitions:

Let #:RT™ — R™ be a continuous increasing function satisfyin@) = 0, and letA be a
bounded subset &“. If | B| denotes the diameter of the g&tlet

H?(A):i?{f{ > h(|ui|)},
(uj)eld

where the infimum is taken on all coveringsby families of balls(u;);en Of radius at most.
TheH"-measure of is defined as:

H(A) = IimOHf(A).

We use the functions, (x) = (logx)?|x|“.
Since

K 1 17
U g * |~z e
mzt,
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is [0,1]9, we are exactly in the position to apply Theorem 2 of [16] which asserts that
H"4/«(F,) > 0 (so that the Hausdorff dimension 8 is larger thani/«). Following Theorem
2.1 0f [18], the set of points where a functionf}? has a Holder exponent less than % + %

has a vanishing{"/« Hausdorff measure. It follows that the set of points where the Holder
exponent is exactly — % + Of’—p has the dimensiod/«.

Note thatFy = [0, 1] and, ifx € F1, H (x) < s; thus Theorem 2.1 of [18] implies that Holder
exponentis almost everywhere

We consider now the case whepe= g = oo, i.e. theC*(R?) case. Since&*(R?) is not
separable, the argument in this case is slightly different. We still use a given wavelet basis, and

we denote byE,, the set of functions whose coefﬁuemﬁ\é) are each a nonvanishing multiple of
2757 /2™ on this basis. We choose for norm 6ti

I £l =suge’29|
i\

and we define

1
and
A=Y )
m>M
The setA is a countable intersection of open dense sets arfdb#longs to onet,,, its wavelet
coefficientsd”) satisfy:

275

’d)(»i) ‘ > 2m+l

so that its HOlder exponent is everywhere equal to
We leave the case where only one amgnandg is infinite as an exercise.

2.3. The Sobolev case

The LP-* case is obtained by a slight adaptation of the Besov case, so that we only mention
the modifications.

Sincer,’1 — L7 < B;*, we can choose for saturating function the one we constructed
for B;’l

We pick for radius of the balB(g,,, r»), rn = #2*“‘1/1’, which, as in the Besov case insures
that at the scal¢ = n all wavelet coefficents of the elementsiig,, ;) are a slight modification
of those of the saturating functian. The result follows as above.

2.4, Thecasa —d/p <0

Whens — d/p < 0, the upper bound (8) for the spectrum of singularities no more holds
because some functions &f, or of L?** are not locally bounded. We will now check that
this is the case for quasi-all functions.

We suppose now that the wavelets we use are compactly supported, as in [8]. We will use
the following lemma which is an immediate consequence of the formula defining the wavelet
coefficients.
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LEMMA 2.—If f is bounded in a neighbourhood @4, there exist, C > 0andJ € N such
that if [ — xo| <r andj > J, |c\”| < C.

We pick for saturating function the functioA whose wavelet coefficients are defined as
follows: the coeﬁicient&fxi) of F vanish except when each coordinateof k = (k1, ..., kg)
is a multiple of[2//j1, and in this case;” = j

There are less thaj? nonvanishing wavelet coefficients in the unit cule1]?, so that,
ifwo=d/p—s,

: ay; \YP .
(33) (Z‘cil)z(s,bj‘l’) < j1+d/p27wj
k

and (17) holds.
The construction of the residual set follows the previous similar proofs. We pick a dense
sequencef, in Bf,’q, we defineg, as in the beginning of Section 2.2, and the open ball around
d
gn is chosen of radiug, = %2(37)”. Thus, if f belongs to this ball, the wavelet coefficients of
f indexed byj = n andk such that each coordinate of k is a multiple of[2//j2] are larger
thanj/2. We define as before:
A= m U B(gn, ).

meNn>m

A function f that belongs taA belongs to an infinite number of balk(g,, r,), and thus cannot
be locally bounded because of Lemma 2. Hence the second part of Theorem 2 holds (the proof
for LP-% is exactly similar).

2.5. The caseB,?nCY

We prove now the last part of Theorem 2; thus we consider the case of the intersection
Bf,’q N C”(R%), and of course we suppose that y (because, if < y, the functions ofC”
belong locally toB,,?).

We start by defining a saturating functiéhadapted to this case. Let

(34) I = [W%S)p]}

The wavelet coefficients af are picked as follows:

@ _ { j—2/42-vi if each coordinate of is a multiple of 22-L, (35)
B j%a2-si else. (36)

PrROPOSITION 3. — The saturating functiod” defined by(35) and(36)belongst08f,’q NCr.

The domain of definition of its spectrum of singularities is the inte[rya{”(’}’,%s)p], where
d —
d(H)= MH,
4
and for almost every,
dy

h =—\
F(x) d—sptyp



538 S. JAFFARD / J. Math. Pures Appl. 79 (2000) 525-552

Proof of Proposition 3. The saturating function belongs toB,? because there are/2
wavelet coefficients of size 2/ in the cubg0, 1]¢ so that:

v
(Z‘Cii)vz(spd)j) r <j*Z/q(zdL(nyj)bz(spfd)j +2dj(27sj)l72(sp7d)j)l/b
k

< 21/Pj—2/<];

F belongs toCY becaus¢c§i)| <27V,
Now, we calculate the Hélder exponent 8f By analogy with Section 2.1, we say thais
a-approximable if there exists an infinite number of wavelet coeﬁicieir‘ﬁSatisfying (35) and

such that
(37) 27/ 4 |x — Al <2798,

We define the exponent of approximationcats the supremum of all suefs, andJ, as the set of
points where the exponent of approximatioidt follows that the exponent of approximation
belongs to the interval:

[1, L}
d+(y —s)p

Letx € Ju; Ve > 0, there exists an infinite number of wavelet coefficiejﬁit)ssatisfying (35)
such that 27 + |x — A| < 2~@=9L_For these coefficients, (25) is smaller than

v yd

38 = .
(38) (@—e)L (x—&)d+(y—s5)p)

For all wavelet coefficients satisfying (35) and such that large enough,
27 4 x — | 27 @foL
so that (25) is larger than

vioo_ vd
(@+e)L (a+e)d+(y—s)p)

The other wavelet coefficients are of size’2 the liminf in (19) is never attained on those
coefficients because we have:

yd
_— < S.
a(d+(y —s)p)
It follows that the HOlder exponent at the pointsigfis

_vd
ad+(y —s)p)’

Using the trivial covering by the balls of radius®" centered at thé such tha’tﬁ’) #0, we
obtain that the Hausdorff dimension &f does not exceed/«. Since the balls centered at the
same points and of radius 2 cover[0, 1], we are exactly in the position to apply Theorem 2
of [16] which asserts thak{"e/=(J,) > 0 (so that the Hausdorff dimension gf is larger than
d/a). Following Theorem 2.1 of [18], the set of points where a functioB Jf NC” has a Holder
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exponent less thagwiﬁ)p) has a4/« Hausdorff measure vanishing. It follows that the set
. .. . yd . . .
of points where the Holder exponent is exac =D has the dimensiod/«. Since the

exponent of approximation belongs|th m]; the second point of Proposition 3 follows.
Furthermore, since every point satisfies (37§ witl 1, for almost every

dy
F(x) d—sp+yp

the last point of Proposition 3 follows.O

In order to obtain a residual set, we follow the construction of Section 2.2. Using the same
notations, we now pick for radius of the baBsg,,, r,)

B 1
T 2n2/4

—sn

T'n

so that, at the scalg¢ = n, the coefficients of a function oB(g,,r,) is at least half the
corresponding coefficient df. We define now the residual set as:

(39) A= ﬂ U B(gn,r).

meN n>m

If a function f belongs ta4, it belongs to an infinite number of balB(g, . r,). Denote byB,,
this sequence of balls, and I, the set of points satisfying the following property:
For an infinite number of values gfthere existg satisfying (35) and such that

k
X — —

2]

1

< 2aL'

. . yd ..
The same cr_:llculatlon as above ylehg@w as upper bound of the Holder exponentfof
at such a point € K,,.
The derivation of the dimension &f, is, as before, a direct consequence of Theorem 2 of [16]
which yields that"¢/« (K,) > 0 (so that the Hausdorff dimension &f, is larger thani /«). The
: s " yd
set of points where a function i,” N C” has a Holder exponent less thg@m has a

"4/« Hausdorff measure vanishing. It follows that the set of points where the Holder exponent

of fis exactlyWVd_s)p) has the dimensiod/«. Thus its spectrum of singularities is defined
d .

on[y, M):i_s)p] where:

d(H) = M’%WH.

Furthermore, the same argument as above shows that the Holder exponent takes almost

everywhere the valu%.
The adaptation of this proof in order to deal with the caseof N C? is straightforward and
left to the reader. Theorem 2 follows.

2.6. Generic validity of the multifractal formalism

The following propositions show the difference between the two cases depending whether
so — d/ po IS positive or negative.
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PROPOSITION 4. — If so — d/po > 0, quasi-all function in the Besov spa&%%"’o satisfy

(40) () = Pso if p < po,
MPI=Vd+p(so— L) if p> po.

The second assertion of this proposition shows that the Besov embeddings are sharp for quasi-
all functions (and, therefore, the Sobolev embeddings are also sharp for quasi-all functions):
Functions of a Besov space strive to be as unsmooth as allowed by the Besov embeddings.

PROPOSITION 5. — If so — d/ po < 0, quasi-all functions inB,g © N C7 satisfy

i p< po,
(41) ) ={ 1 e

(so—y)po+yp ifp=p

Remarks— In the casep — d/ po > 0 the multifractal formalism yields for quasi-all functions:

—00 if H <so—d/po,
(42) in%(d—n(l?)-i-HP): d — poso+ Hpo if so—d/po< H < s0,
N>
! d if H> so,

thus it yields correctly the increasing part of the spectrum (12).
In the case oiBf,%"’o N C7, the ‘usual’ multifractal formalism (where the Legendre transform
is taken for allps positive) yields:

—00 if H<y,
(43) info(d —n(p)+ Hp)=1{d—sopo+ Hpo if y<H<so,
P d if H > so,

and we do not obtain the right spectrum given by Proposition 3. On the opposite, let us now
restrict the range op’s on which the infimum in the Legendre transform is taken to the values
for which a continous embedding holds; i.e. for the such that)(p) > d. It means that the
infimum is taken forp > p. where:

d—(s0—y)po
pe=—"T—"",
14
pe is larger tharpg so that
_ —00 if H<y,
(44) nf (d —n(p) + Hp) = Hp, = Hd=Compe0 it pr >,

which yields the correct increasing part of the spectrum (13).

Proof of Proposition 4. We start by determining the functiof(p) of the saturating function
constructed in Section 2.1. There afd @l — 2—”’) wavelet coefficients satisfying (20); thus

Dos—hjp_ 1=279) AT (o =50)j 058 T n(s—L)j\ P
Z|C}v 25 | jar ZZ pO 200725 » )
X

(1-279 2]:251(1—%)12;;(%0—%3—50);

iap
J 7=0
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d_d oy
If p > po, this quantity is equivalent tg—72" 70 » ™59/ gnd F ¢ B, if and only if

s <so+ 4 — L itfollows that, forp > po, n(p) =d + p(so — ).

If p<po, Y, |c;i)2(“’%)j|1’ is equivalent tgj ~4P26 =50/ and F € B),? if and only if s < so.
It follows thatn (p) = spo. Thus (40) holds for the saturating functiéh

Let us now determine the functiof(p) for the elements of the residual set (32). First, we
obtain a lower bound for(p). The Sobolev embeddings imply that, for< 1/po, s(q) >
so —d/po + dq so that, forp > po, n(p) > d + p(so — d/po). Sinces(g) is increasing, for
q = 1/po, s(q) = so, so thaty(p) > pso for p > po.

In order to obtain an upper bound, we remark that is an element of (32), keeping the same
notations as in Section 2.2, at the scajes n;, f has each of its wavelet coefficients larger
than half of the corresponding wavelet coefficientg‘ofTherefore, iff € B(j’°°, Fe B(j’°°, and
therefore the functiom /(p) is smaller thamg (p). It follows thatnr(p) is given by (40), and
Proposition 4 holds. O

Proof of Proposition 5. ¥We consider now the case Bﬁ%’qo N CY whensg < d/po. We start
by determining the function(p) of the saturating function constructed in Section 2.5. There are
2¢L wavelet coefficients of siz¢=2/92-7/ whereL = [M]’]; and there are? — 24L

, Ats—dyi o .
wavelet coefficients of sizg=2/427%/; thusY", |c\”2 "7/ | is equivalent to:

2Pl W+ (y=s0)p0)j =y Piplsp=d)j 4 j=2p/apdip=sopip(sp=d)j

= j~%rla (Z(V(po—p)+SP—SOpo)j + 2(5—30)pj)_

It follows thatn (p) = inf(sop, (so — ¥) po + v p), and Proposition 5 holds far.

Let us now determine the functioyy (p) for an elementf of the set of generic functions
defined in (39). By interpolation, we hawdq) > y + gpo(so — y) for ¢ < 1/po, so that
n(p) = po(so — y) + py forfor p = po.

Sinces(g) is increasing, fog > 1/ po, s(g) > so; so thatp(p) > pso for p < po.

In order to obtain an upper bound, we consider a generic funcgtiokeeping the same
notations as in Section 2.5, at the scajes n;, f has each of its wavelet coefficients larger
than half of the corresponding wavelet coefficients of the saturating funétiorherefore, if
f e By™, F e By™, and therefore the functiomy(p) is smaller thamg(p). It follows that
nr(p) is given by (41), and Proposition 5 holdsto

3. The Frisch—Parisi conjecture

In this section, we will check thdt is a Baire space and prove Theorem 1. We first suppose
that n(p) is a strongly admissible function (in the sense of Definition 1); we consider the
topological vector spacE defined by:

(45) V= ﬂ pO)—)/p.p.

p,loc
>0, 0<p<oo

Because of the Besov embeddings, see [E7¢an be written as a countable intersection

— _ p@M(pn)—en)/Pnspn
V=B, where B,=B8{" :
n>1
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pn being a dense sequencg @) +o00) ande,, — 0. We can also make the additional assumption
that

(46) Dn = 1/\/E

Let ¢(x) € D(RY) such thatp(x) = 1 if x € B(0,1) and¢(x) = 0 outsideB(0, 2) In the
following we denote by /||, the (pseudo)norm of a functiofy (x/n) in B,; Note that, though
eachB,, is either a Banach space (whgpn> 1) or a quasi-Banach space (whgn< 1), V is not
a pseudometric space because the constant involved in the definition of a pseudo-metric space is
not bounded whep — 0.

In V, a countable basis of neighbourhoods of the origin is given by the sets:

=1,...,

Anz{f:

Let E be a contable intersection of dense open subBgtsf V, let f € V, and letD be a
neighbourhood off in V. There existsV such thatD contains the set

,,,,,

We want to find an element & = ("),,.\ Ex in €.
Let Co > 4N. SinceEp is dense inV, there existsfp € Eg such that:

1
Vi=1...,N, |f— folli <—,
Co

and sinceAdg is open, there existsy > 4Cq such that:

1
{gi sup ||g_f0||i<—}
no

i=1,...,np

is included inAg.
Let C1 > 4ng. SinceA; is dense inV, there existsf; € A1 such that:

) 1
Vi=1,...,n0, llfo— f1lli < =,
C1

and sinceA; is open, there exists; > 4C1 such that:

1
{gi sup llg — fili < —}
i= ni

'—1,...,111

is included inAj.

We continue this construction choosing a sequeficevhich grows fast enough so that the
sequencef,, in V is a Cauchy sequence in eaBf oc (Which is complete) and has a limit in
eachA, (the reader will easily check that, because of our choice (46), an exponential growth,
with a large enough exponent, is sufficient). The sequgjdbus converges iy to an element
which belongs t¢), .y A» and also belongs t6. ThusV is a Baire space.

We will now show that quasi-all functions df satisfy formula (11). As above, we start by
constructing a saturating function.
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3.1. A saturating function adapted ton(p)

As in Section 2.1, the wavelet coefficients of the saturating funckionill depend on the
dyadic properties of thé-uplek = (k1, ..., kq), and for the same reasons, we can consider only
the points of(0, 1)¢ in the computation of the H6lder exponent. However, we have to take the
extra care that the saturating function thus constructed:
e has wavelet coefficients small enough so that it belongs to all the Besov spaces that appear
in (45),
e has wavelet coefficients large enough so that these inclusions cannot be improved (they are
‘saturated’).
Using the definition of/ given in (20), let

(a7) a(].,k):igf<d(j—J)—n(p)j>7

p

we define the wavelet coefficients Bfby

(48) o = Lpaib
A ja ’
with @ = 2 + 1 (of course, if the infimum in (47) is-co, we picke!” = 0).

PROPOSITION 6. — The saturating functio#’ belongs to the spaceé defined in(45), and

(49) Vp>0, nr(p)=n(p).

Remark— This proposition implies that the necessary conditions of admissibility required in
Definition 1 are also sufficient, and thus that Proposition 1 holds.

Proof of Proposition 6. +et pg be given and letg = n(po)/ po. Since

. dij—J) )
aG ) <L i)
Po

the coefficients (48) are smaller than (21), so that Proposition 2 implies/hatlongs to
B}Zé”(’)/”o’w; henceF belongs to the spacé defined by (45) angr(p) > n(p).

We now prove thaipr(p) < n(p), i.e. thatVp, Yo, if © > n(p), F ¢ B;’/’”OO. Instead of
working with n(p), we rather work withs(¢) = gn(1/q) because the admissibility conditions
are more easily expressed in terms @f). Let

(50) p=af1-2);

J
p takes discrete values between 0 andith spacingd/j, and
(51) a(j,k)=ji[;f(pq—S(q)).
Thus

o if 0 < p < 5'(4+00), the infimum is attained fa = 400 and is—oo,
o if s'(+00) < p <5'(0), the infimum is attained fora € (0, c0),
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e if p >5'(0), the infimum is attained faj = 0 and is—s(0).

Let go > 0 and B > s(qo). Let us check thatF ¢ B’3Oo Since s(¢g) is concave and
0<s'(g) <d, we can find (forj large enough) & of the type given by (50) and such that
the lineB + p(q — qo) lies above the graph 6fg); thus

(52) Je>0,VY9>0, B+p(@—q0)=s(q) +e.

For this choice op (i.e. for the corresponding choice #fgiven by (50))

a(j, k)= jle =B+ pqo) = je—pB)+d(j—J)qo.

Therefore there are’? coefficients larger thajp—¢2/(¢=A+d(=/ao 5o that

Z‘ NB=~dao) ’1/40 > j—a/qozdf(2j(S—ﬁ)+d(j—1)qoz(/3—dqo)j)1/‘10
k
= jT4/90981/%0,

which tends to infinity wherj — +oo, so thatF ¢ BS(%) *

(49) follows. O

. Since this is true for anyo > 0,

3.2. The Hoélder exponent ofF

PROPOSITION 7. — The Hdolder exponent of the saturating functibns:

(53) hr(x0) =

Ol(.xo) a)>ia(xO) S(l]'lr(w(s(q) — dq) +dq)

Proof of Proposition 7. Let xg be fixed. We estimate as usual the order of magnitude of

log(lc”))
log(2=/ +|xo — A])

(A) The wavelet coefficients such thaits inside the cone of influence.
In order to obtain a lower bound for the Holder exponent, let us consider all the wavelet
coefficients ‘inside the cone of influence.xaf, i.e. such thatj andk satisfy

k
X0 — —

—J
> <27,

(54)

Lete > 0. Forj andk given, we define/ andK by K /27 = k/2/ (with K € Z¢ — (2Z)9).
Sinceu(xp) is the dyadic exponent ab, for J large enough,

1

(59) @G +ed

K
2]

k
x0— —|.

X
0— 2]

From the irreducibility of the fractiork /27, it follows that j > J, and from (55) and (54) it
follows that:

(56) Jj < (a(xo) +¢)J.
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Furthermore, using again (54),

log(lc;”)  log(lcy])
log(2~/ + |xo—A)  —jlog2

= <supdq (% — 1) +s(q))(1+ 0(1)).
q

(1+0(D))

Because of (56), it is larger than

1
(57) <S‘L]Jp<dq <m - 1) + s(q)>> (1+0(1)).

This holds for any > 0, and the ¢1) — 0 whenJ — +oc¢; it follows that the liminf taken on
the wavelet coefficients inside the cone of influence is larger than:

sup(dq (—1 - 1) +s(q)),
q a(xo)

which is larger than (53), because it corresponds to choesiagr (xo) in (53).
(B) The wavelet coefficients such thais outside the cone of influence.
Now, the coefficientsf\’) are such that

(58) |k/2/ — xo| > 277.

It follows that:

log(ley”) ~ log(le}”))
0G@  + xo— ) logzo 1 - T OV
d —J j log2
(59) _ (sup dg(J — )+ js(@))log (1+0(D).

—log(jxo — Al)

(1) A lower bound when > a(xg)J.
We consider the wavelet coefficients such that o (xg) /. Because of (55), (59) is larger than

dq(J — j)+ js(q) 1 I (500 —
(Sffp( J(@o) + o) ))(1+°(1))>a(xo>+e(sffp<1(s(q) dq)+dq>)(1+°(1))'

Sincee can be chosen arbitrarily small, it is larger than

Sur(§ (s(q) —dq) + dq).

inf
Jj/J Zaxg) a(x0) 4

(60)

(2) A lower bound when < a(xg)J.
We consider the wavelet coefficients such that o (xo) /. Because of (58), (59) is larger than

(Sup<d‘1(J - j? + js(q)>>(1+ o(1) = <supdq<§ - 1) +S(q))(1+ o(1))
q

q J

which, sincej < a(xp)J/, is larger than:
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<SUp(d ( : —l)+s( )))(1+o(1))
ur da{ o) q :

sup(%(S(q) —dq) +dq),

inf
Jj/J Zaxg) a(x0) 4

which is larger than

(61)

since it corresponds to taking= «(xp)J in the infimum.
(3) An upper bound for the Hélder exponent
There exists an infinite number 6K ,,, J,,) such that:

1

K, -
= 2(0(()60)78)/;1 ’

XO—E

We pick j andk such that:

k K
Zzz_f: and j > [(a(xo) +¢)Ju] + 1.

This choice is possible because it implies that J,, and because

g
2@ +e)In ~

k277 — xo| =

so thath is indeed outside the cone of influence.
Using (59), it follows that, for such a couplg, k), the corresponding wavelet coefficients

satisfy:
log(lc”|) dq(Jn — j) + js(q)
log(2=/ + |xo — A]) S (S;Ip( Jn(a(xo) — &) )) (1+0)

1 j
s m(sgp(,—n<s<q> —dq) +dq))(1+o<1)).

Sincee can be chosen arbitrarily small, andJy can be chosen arbitrarily close to any real
number larger thaa (xp),

h < inf su —d dqg).
£(x0) o 20 w(s(q) —dq) +dq)

This ends the proof of Proposition 7
3.3. The spectrum of singularities of the saturating function

Let us now rewrite the Holder exponent in a more convenient form. For that we rewrite (53)
as:

(62) hy(xo) =

inf  G(w),
a(xg) o>a(xo)

where

(63) G(w):wsup<s(q)—d<l— 1)(1)
q>0 w
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Thus, ifs(h) = sup,.os(q) — hq is the Legendre transform efq),

(64) G(a)):a)§(d(1— 1))
1)

The following properties follow immediately from the definitionsoénd the properties of.
e 5(h) =4ooforh <s'(+00);
e 5(h) =s(0) for h > s'(0);
e 5(h) is a convex decreasing function.
The following properties follow foG:
o G(w)=+ooforw< %;
e G(w)=ws(0) forw> #(0)
If G is twice differentiable, it follows from (64) that:

2
)

so thatG is convex. The case wherg is not twice differentiable follows by a standard
approximation argument.

Denote bywy, the value ofw for which the infimum ofG is attained; therG’ (wp) = 0. Let
us determin@(wo) Let g(w) be the value ofy where the supremum in (63) is attained. Since
wp € (ﬁ = (0)) g (w) is finite and non-zero in a neighbourhood«®f, and is obtained
by annulating the derlvatlve of the functign— w(s(q) — dq) + dq, which yields

(65) o(s'(¢(@)) —d) +d =0.

Therefore

G(w) =w(s(q(®) —dg(®)) +dq(w).
The conditionG’(wp) = 0 thus becomes:

s(q(w0)) — dq(wo) + wo(s' (¢ (@0)) — d)q' (wo) +dq’ (wo) =

which, using (65), implies that(g (wg)) — dg(wo) = 0, so that, ifg. denotes 1p., q(wo) = qc,
and thereforeG (wo) = dg.. It follows that G is decreasing fow < wp, and increasing for
w = wo.

Let us now sum up the previous results and deduce the spectrum of singularities of the
saturating functionF' (using the fact that the Hausdorff dimension of the set of points with
dyadic exponertt is exactlyd /«). Let H(a) = alsugo>a G(w).

° If o> = S,(O), H(x) = s(0) and the corresponding dimension is therefd(e(0)) =
—s(0).
° If 1<a< 4= s/(q 3 H(x) = %G(wo) = % and the corresponding dimension is therefore

d(H) = for H € [gc(d — 5(qc)), dgcl-

o If <a<

_d __
d—s"(qc) s/(q) = d—s'(0)*

1
(66) H()=—-G(a)= SU[{s(q) —dg+ d_q)
o p o
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and the corresponding dimensiondieH ) = d /«a. Thus

—d+d
H =sups(q) —dq+d(H)q = sup(u).
q p

p
ThereforevH, p

S n(p) —d+d(H)
- P
so thatd(H) < Hp — n(p) + d with equality for onep, so that:

H

d(H)= in;f(Hp —1(p) +d).

Note thatH («) in (66) is a decreasing function af Thusd(H) is an increasing function
of H. If « = #/(q), we obtainH (&) = gc(d — s'(g¢)), and if a = #/(0)' we obtain
H(a) = s(0). Thus, in this cased takes values ins(0), g.(d — s'(g:))] where it is
increasing.

Note also that, since(w) satisfies

, 1
s (q(®)) =d<l— —>,
w

and since’(g) is decreasing, it follows that(w) decreases from. to 0 whenw increases
from wo to #/(0)- Sinceg (w) is the point where the supremum s reached in (63), it follows
that the range of s can be restricted {®, ¢.], and thus the range @fs to[ p., +-o0].

Finally, from the relationshig (p) = ps(1/p) and from the definition of., it follows that

n'(pe) = qe(d — 5'(q0)).
Let us now compute
(67) inf (Hp —n(p)+d)

PZPc

for H > n’(p.). The infimum in (67) is attained fgr = p. so that its value is

H
Hpe—n(pe)+d=Hp:= "

c

Note that, sincex(x) = 1 for almost every, so thathr(x) = d/ p. for almost everyc. Then
we have the proposition:

PrRoPOSITION 8. —The domain of definition of the spectrum of singularities of the saturating
functionF is the intervals(0), d/ p.] and, on this interval

(68) d(H)= inf (Hp —n(p) +d).
PZPpe

Furthermore i p(x) =d/ p. for almost every.

We will use in the following a slightly different saturating function, which is obtained by
adding 22-/'°9/ to each wavelet coefficier@; , of F. Since it corresponds to addingC&®
function, it affects neither the spectrum of singularities, nor the scaling fungtion



S. JAFFARD / J. Math. Pures Appl. 79 (2000) 525-552 549

3.4. Upper bounds for spectra

Let us recall that, ify(p) is strongly admissible, and j§. denotes the critical value for which
n(p) =d, (10) yields
(69) d(H) < igf (pH +d —n(p)).
p/p('
We can apply (14) foy = s(0) and for all p < p., which yields

H
70 d(H)< inf [ pH+ —(d — .
(70) (H) plgpc(p +- (0)( n(p)))

Let us now prove that, if (69) holds, then (70) holds, so that we can only keep (69) as a

condition for the spectrum.
For a givenH , we consider the function

H
(71) pH + m(d —n(p)).

We write it as usual as a function gf= 1/ p; sinces(¢) = gn(p), (71) becomes

H H s(q)
=—+—d——);
¢5 () q +s(0)( q )

thus

/ _L _ _ /
g”(q)_qu(O)(s(q) s(0) —gqs'(q))

which is positive because of the concavitysd). It follows thatgg (¢) is minimal forg = q.,
and thus that the infimum in (70) is attained fo&= p., which corresponds to the cage= p,
in (69). Therefore, if (69) holds, (70) holds a fortiori. Sinde> s(0), it follows that all the upper
bounds for spectra that we have become equalities for the saturating functioivh el dg.].

3.5. The residual set

The space’ is separable, since finite linear combinations of wavelets with rational coefficients
are clearly dense. We can therefore pick a sequéneéhich is dense ir'V. We denote by, the
following modification of f,,:

e If j <n the wavelet coefficients gf, are the same as those ff.

e If j > n the wavelet coefficientsi’) of g, are the same as those of the saturating function

F constructed in the previous subsection.

It clearly follows from our choice of the wavelet coefficients of the saturating fundficimat

theg, are also dense iiW. The G5 dense set that we will consider is

(72) A= ﬂ U B(gn, ),

meNn>=m

wherer, = 271097

A is clearly a countable intersection of dense open sets. We have choserall enough so
that, at the scalg = n each wavelet coefficients of the functionsBg,, r,) is close to the
corresponding coefficient ¢f,; indeed, the smallest coefficient of the saturation functioat
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the scalej = n is larger than 299" andr, is chosen so that the wavelet coefficientgaiffer
from those off by (much) less thaf.2—"109".

If a function f belongs to the residual sgt it belongs to an infinite number of balBg,,, r;,).
Denote byB,, this sequence of balls. Thus, at the scglesn;, the wavelet coefficients of are
‘close’ to those of the saturating functidh We denote by, the set of points such that

K
T 2lng/e]

1

~ 2"]

3K |x

for an infinite number of values @f This set can also be defined as
. K 1 174
limsup (_J Siurel [_ﬁ’ ﬁ} .

The Holder exponent of at such a point € F, is estimated exactly as in Section 2.2 and we
obtain that the Holder exponent at this point is smaller tHan).

In order to compute the dimension &f,, we apply apply again Theorem 2 of [16] which
asserts thak("¢/= (F,) > 0 (so that the Hausdorff dimension Bf is larger thani /«). Following
Theorem 2.1 of [18], the set of points where a functionBijnq has a Hdolder exponent less
than H («) has aH"¢/« Hausdorff measure vanishing. It follows that the set of points where the
Holder exponent is exactlyf (o) has the dimensiod /«, and (11) holds. Furthermore, since
everyx belongs toFy, it follows that the Holder exponent isy (x) = d/ p. for almost everyx,
and the first point of Theorem 1 holds.

As regards the second part of Theorem 1, we note that, gifyeeis not strongly admissible,
s(q) < dgq; therefore, we can pick for saturating function the function defined in Section 2.4. The
argument developed in Section 2.4 applies here also without any change and yields second part
of Theorem 1.

Concluding remarks

One may wonder why the Frisch—Parisi formula is generically wrong as stated unsually, i.e.
when the infimum in (5) is taken on gil > 0. By inspecting the proof of the determination of
the Holder exponent of the saturating functions when- n’(p.), the reader will check that
the Holder exponent is not determined by the wavelet coefficients inside the cone of influence
(as is the case foH < n'(p.)) but rather by wavelet coefficients in ‘tangential domains’
277 ~|xo— j2=7|1*P for a B > 0. This behavior is characteristic ocillating singularities
a typical example of which is supplied by the functions

. 1
lx — xo|? sinf ——— ).
|x — xol#

(Note that this notion is a slight variant of thehirps studied by Yves Meyer in [18] and [26].)
Such behaviors are studied in [2] and [15] where it is shown why the multifractal formalism fails
for functions which include such local oscillatory behaviors. (Indeed, the heuristic argument
usually advocated to justify the multifractal formalism makes the implicit assumption that the
Holder exponent at a point is given by the rate of decay of the wavelet transform inside the cone
of influence at this point.) It is therefore not surprising that, if such Holder singularities appear
for H > n'(p.), the usual multifractal formalism fails in this range of Holder exponents.
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Note added on proofs

Since this paper was submitted, Yves Meyer and the author extended formula (10) and
Theorem 2 to the critical Besov spaces (wheee d/p), see “On the pointwise regularity of
functions in the critical Besov spaces”, preprint.
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